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ABSTRACT

RDMA has been an important building block for many high-
performance distributed key-value stores in recent prior work.
To sustain millions of operations per second per node, many
of these works use hashing schemes, such as cuckoo hash-
ing, that guarantee that an existing key can be found in a
small, constant number of RDMA operations. In this pa-
per, we explore whether linear probing is a compelling de-
sign alternative to cuckoo-based hashing schemes. Instead
of reading a fixed number of bytes per RDMA request, this
paper introduces a mathematical model that picks the opti-
mal read size by balancing the cost of performing an RDMA
operation with the probability of encountering a probe se-
quence of a certain length. The model can further leverage
optimization hints about the location of clusters of keys,
which commonly occur in skewed key distributions. We ex-
tensively evaluate the performance of linear probing with
a variable read size in a modern cluster to understand the
trade-offs between cuckoo hashing and linear probing. We
find that cuckoo hashing outperforms linear probing only
in very highly loaded hash tables (load factors at 90% or
higher) that would be prohibitively expensive to maintain
in practice. Overall, linear probing with variable-sized reads
using our model has up to 2.8× higher throughput than
cuckoo hashing, with throughput as high as 50M lookup op-
erations per second per node.

1. INTRODUCTION
RDMA has been an important building block for many

high-performance distributed key-value stores in recent prior
work. Of particular interest are one-sided RDMA opera-
tions that allow reads and writes to remote memory and
completely bypass the remote CPU. An RDMA READ op-
eration specifies a contiguous memory region in the remote
address space. The local NIC then transmits the request
to the remote network adaptor (NIC), the remote NIC re-
trieves the requested memory region through a local DMA
request and transmits the data back to the local NIC.
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Cuckoo hashing has been widely adopted by RDMA-aware
key-value stores [3, 8, 20] due to the predictable and small
number of RDMA operations to access a remote hash table.
Prior work also proposed using one-sided RDMA verbs to
implement linear probing by doing fixed-size lookups [20],
where the client fetches a fixed number of hash slots per
RDMA READ request and repeats the procedure until find-
ing the key or the first empty slot. However, fetching a fixed
number of slots per RDMA READ request may read too lit-
tle or too much: in a lightly-loaded hash table, one should
read very few slots to conserve network bandwidth; with
high load factors, the average length of the probe sequence
increases dramatically, hence one needs to read many more
slots per RDMA READ request to reduce the number of
round-trips in the network.

This paper introduces a mathematical model to optimize
the read size when reading a remote hash table using linear
probing with RDMA READ operations. The model takes
into account the cost to complete one RDMA READ request
for R slots and the probability of completing the lookup
after k probes. We also propose to incorporate hints on the
location of clusters of keys in the model, which is important
when using datasets with a skewed key distribution.

We extensively evaluate the performance of linear prob-
ing with a variable read size in a modern cluster to un-
derstand the trade-offs between cuckoo hashing and linear
probing. We find that cuckoo hashing outperforms linear
probing only in very highly loaded hash tables (load factors
at 90% or higher) that would be prohibitively expensive to
maintain in practice. Outside of these extreme configura-
tions, we find that both fixed-sized and variable-sized lin-
ear have better throughput than cuckoo hashing, and both
complete a lookup at a latency that is about 60% of the la-
tency of cuckoo hashing, even when cuckoo hashing probes
all candidate locations in parallel. Fixed-sized linear probing
has up to 1.6× higher throughput than cuckoo hashing and
variable-sized linear probing has up to 2.8× higher through-
put than cuckoo hashing. Variable-sized reads never per-
form worse than fixed-size reads, and are 1.7× faster than
fixed-sized reads in lightly loaded hash tables. In addition,
our experiments show that storing records inline (aka. in-
side the hash table) should be preferred when the record size
is up to 32 bytes. Records larger than 32 bytes should be
stored out of band, for example in a heap, despite the need
for additional RDMA requests to access the payload in this
case. When using a skewed key distribution, using hints on
the cluster locations returns matching records up to 1.7×
faster than when reading in a cluster-oblivious manner.
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(a) Linear probing (b) Cuckoo hashing

Figure 1: Examples of probing for key c in a linear hash
table and a cuckoo hash table. The linear hash table uses
one hash function h to determine the slot, while the cuckoo
hash table uses three hash functions h1, h2, h3.

To summarize, the core contributions of this paper are:

1. Introducing a mathematical model to balance the cost
of initiating an RDMA READ request with the prob-
ability of completing linear probing in one round-trip.

2. Incorporating hints in the model on the locations of
clusters of keys on the remote hash table, which com-
monly arises when some keys appear more frequently
than others.

3. Performing an extensive experimental evaluation to
understand the trade-offs between linear probing and
cuckoo hashing for different load factors, inline or heap
storage, as well as skewed key distributions.

2. BACKGROUND

2.1 Linear probing
Linear probing is an open addressing hashing scheme. Fig-

ure 1a shows an example of linear probing. When looking
for key c, the probing algorithm starts from the slot de-
termined by the hash function h(c). In this example, the
algorithm first checks slot h(c) = 2, and if it finds a match-
ing key in this slot it returns it. If a matching key is not
found, the linear probing algorithm reads the next slot until
the matching key is found or an empty slot is reached. One
disadvantage of linear probing is that the probing sequence
can become very long when the hash table is highly loaded.
Long probing sequences require checking more slots (or, in
the worst case, the entire table) which takes more time to
complete the probing.

When a client uses RDMA to access a remote hash table
with linear probing, a trade-off arises when choosing how
many slots each RDMA READ request will fetch. A client
that fetches one slot per RDMA READ request, as when
probing in local memory, will likely require multiple round
trips to reach the key or an empty slot even when the table is
moderately loaded. A client that retrieves multiple slots per
RDMA READ request, on the other hand, is transferring
unnecessary data and waiting longer for a larger RDMA
READ to complete. A common solution in practice is to
fix the size of each RDMA READ to a small multiple of the
cache line size, such as 256 bytes, to balance the high cost of
initiating an RDMA operation with minimal latency impact
compared to shorter reads.

2.2 Cuckoo hashing
Cuckoo hashing uses a family of k hash functions to find

the location of a key, and guarantees that if the key exists
it will be found in one of the k slots, as determined by each
hash function, regardless of how heavily loaded the hash
table is. Figure 1b shows an example of a lookup operation
in a 3-way cuckoo hash table. The lookup operation for key c

checks three slots h1(c) = 1, h2(c) = 6, and h3(c) = 4. Prior
work has also proposed using set associativity to further
improve the space efficiency of cuckoo hash table [8]. With
m-way set associativity, a cuckoo hash table stores m records
per slot. Each lookup operation to a hash slot checks all m
records in the slot for possible matches.

An one-sided RDMA-based implementation of a distributed
cuckoo hash table issues k READ requests to access k re-
mote locations. There are two ways to issue RDMA READ
requests for a k-way cuckoo hashing lookup: (1) sequentially,
which inspects each candidate location in sequence and stops
as soon as the key is found; and (2) in parallel, which issues
k RDMA READ requests concurrently. We refer to these
variants as “Sequential Cuckoo” and “Parallel Cuckoo”, re-
spectively, for the remainder of this paper. Parallel Cuckoo
transmits k RDMA READ requests in parallel, and hence
hides the round-trip latency of multiple messages, whereas
Sequential Cuckoo issues fewer RDMA READ requests if
the key exists in the table.

3. VARIABLE READ SIZE MODEL
This section introduces a cost-based model that predicts

the optimal read size. The model contains three parts. The
first is modeling the cost of a single RDMA READ request
that reads R contiguous hash slots from a remote hash ta-
ble. The second is a probability model that calculates the
expected number of R-sized RDMA READ requests to reach
the first empty slot given the expected load factor. Finally,
we show how to further increase the prediction accuracy
of the model if precise information about the occupancy of
some slots in the hash table is known.

3.1 Predicting the read size
Assume that a RDMA READ request fetches R contigu-

ous hash slots at a time. Let X(R) be a random variable
that denotes the number of RDMA READ requests to reach
the first empty slot, and let T (R) be the cost of issuing a
single RDMA READ request. The model predicts the read
size R∗ that minimizes the total cost for the average probing
sequence length, or

R
∗ = argmin

R

(
E[X(R)] · T (R)

)
(1)

subject to the bandwidth constraint

R · w · ρ̂ ≤ l (2)

where w is the size of a slot (in bytes) in the hash table, ρ̂
is the messaging rate, and l is the bandwidth of the link.

The intuition is that it suffices to use a simple cost model
based on the latency of a request, as long as the read size
does not exceed the available network bandwidth. If the
optimal read size would require more bandwidth the link
can support, the model picks the largest size possible that
will not saturate the link bandwidth to avoid queuing delays
(which are not modeled).
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Figure 2: Calculating Prob2(R) from the cumulative proba-
bility Ck of finding the first empty slot after probing k slots.

A practical issue that arises when computing the messag-
ing rate ρ̂ is that the messaging rate ρ̂ is a function of the size
of the message being transmitted, which in turn is a function
of R. The model estimates the messaging rate for R-sized
messages as ρ̂ = ρ0 · h

h+w
, where ρ0 is the peak messag-

ing rate for sending 0-byte payload messages [13], adjusted
proportionally to the size of the request (h + w) compared
to a 0-byte payload message (h). The message size of a 0-
byte RDMA READ request is h = 30 bytes based on the
InfiniBand specification [11].

3.2 Modeling the cost of a single read T (R)

We use a latency model to capture the cost of issuing an
RDMA READ request for R contiguous slots. The cost of a
single read is a linear function of the number of slots R that
are being retrieved:

T (R) = c+ α ·R · w (3)

Each RDMA READ request has a fixed cost c, which in-
tuitively corresponds to the latency of initiating the request.
The coefficient α is the signaling rate of the network in sec-
onds per byte, which is reciprocal of the network speed. The
variable w corresponds to the size (in bytes) of a hash slot.

3.3 Computing the number of reads X(R)

Let Probi(R) denote the probability of finding the first
empty slot after exactly i RDMA READ requests. Then:

E[X(R)] =
∑

i

i · Probi(R) (4)

Let Ck be the probability of finding the first empty slot
after probing k slots, with C0 = 0. Using exactly i RDMA
READ requests to find the first empty slot means the previ-
ous (i−1) RDMA READ requests all failed to find an empty
slot, and the first empty slot is found in the i-th RDMA
READ request. Figure 2 visually shows how Probi(R) can
be computed. Performing i RDMA READ requests for R

slots retrieves i · R slots in total. The probability of en-
countering the first empty slot after i requests is Ci·R, so
Probi(R) can be calculated as:

Probi(R) = Ci·R − C(i−1)·R (5)

We calculate the cumulative distribution function Ck from
the probability distribution function Pk, which is the proba-

(a) The slots in the [hi, hi+leni)
range form a cluster.

(b) The cluster hint changes
the calculation of Ck.

Figure 3: The calculation of Ck at the initial probe location
h∗ can incorporate knowledge of a cluster at hash slot hi

that spans leni slots.

bility that the first empty slot is exactly k slots ahead from
the location where probing started. Then Ck is:

Ck =
k−1∑

i=0

Pi (6)

For a hash table with M slots of which N are occupied,
Knuth [15] calculates Pk as follows:

Pk = M
−N

(
g(M,N, k)+g(M,N, k+1)+ · · ·+g(M,N,N)

)

(7)
where

g(M,N, k) =

(
N

k

)

f(k + 1, k) f(M − k − 1, N − k)

f(M,N) =

(
1−

N

M

)
M

N

From Eq. 7, it follows:

Pk − Pk−1 = −M
−N

g(M,N, k − 1) (8)

From Eq. 6 and Eq. 8, we have:

Ck = kP0 −M
−N

k−1∑

i=0

(k − 1− i) g(M,N, i) (9)

where by definition P0 = 1− N

M
.

Computing Pk strictly following the mathematical defini-
tion requires multiplying very small numbers

(
M−N

)
with

very large numbers
(
MN

)
, which poses problems with re-

spect to the numerical stability of the result. Our implemen-
tation (which is described in detail in Section 4) computes
the multiplications in Eq. 9 by transforming them to addi-
tions of logarithms with base M .

3.4 Accommodating cluster hints
The model proposed so far is oblivious to whether any

particular slot is filled or not. However, if certain slots have
been visited recently, such information may be known by a
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Figure 4: A non-associative heap to store records.

client from prior lookups. Although one can use the cluster-
oblivious model in these cases as well, an interesting question
is whether the model can accommodate hints about the lo-
cations of possible clusters to further improve performance.

As shown in the example in Figure 3a, a cluster is defined
as a sequence of filled slots that starts at offset hi, spans leni

filled slots, and finishes at an empty slot at offset hi + leni.
Let h∗ be the location of the slot where the probing will
begin. Let the next cluster start at index hi ≥ h∗ and span
leni slots. Ck can be more accurately computed as follows:

Ck =






∑k−1
j=0 Pj (0 < k ≤ hi − h∗)

Chi−h∗ (hi − h∗ < k ≤ hi − h∗ + leni)
1 (hi − h∗ + leni < k)

(10)

As shown in Fig. 3b, the intuition is that knowing about
a cluster at hi that spans leni slots allows one to accurately
compute that the probability Pk of finding an empty slot in
the [hi, hi + leni) range is 0, and that the slot hi + leni is
assumed to be empty and hence Ck = 1 at that point.

3.5 Model bootstrapping
The only parameters that cannot be set intuitively in our

model are (1) the constant cost of one RDMA READ request
c and (2) the peak messaging rate ρ0. These parameters
need to be set through a simple benchmarking process. The
constant cost c of one RDMA READ request can be approx-
imated as the latency to process one RDMA message with
a 0-byte READ request, while the peak messaging rate ρ0
can be approximated as the maximum achievable through-
put to transmit 0-byte RDMA READ requests. One can use
standard RDMA testing tools such as qperf [9] to measure
these values at the time of deployment.

4. IMPLEMENTATION
This section describes the implementation of lookup op-

erations in the hash table based on one-sided RDMA verbs.
Sections 4.1 and 4.2 describe the overview of the design and
the general procedure of processing lookup operations. Sec-
tion 4.3 describes the linear probing procedure, and Sec-
tion 4.4 describes how tracking clusters is implemented with
linear probing. Finally, Section 4.5 describes the lookup pro-
cedures using cuckoo hashing.

4.1 Design overview
Hash Table Design: Our implementation supports stor-

ing key-value pairs either inside the hash table (inline stor-
age) or in a separate heap (out-of-band storage). We use
Knuth’s hash function to determine which slot a key is hashed
to [15]. We assume that all keys are nonzero, and use zero
to denote an empty slot. When using inline storage, each
slot of the hash table stores the actual key-value pair. When
storing records in the heap, each hash table slot stores one

Figure 5: A 4-way set-associative heap to store records.

key signature and one offset. The offset of a filled slot can
never be zero; an offset of zero implies that the slot is empty.
Figure 4 shows an example of how the key-value pair (“Or-
acle”, “Redwood City, CA”) is stored in the heap. The
signature for key “Oracle” is 16 and the hash value of the
key is 63. The heap offset is 28, which is the index of the
actual key-value pair (“Oracle”, “Redwood City, CA”) in
the heap.

We also implemented a 4-way set-associative table. When
using inline storage, each slot of the hash table stores 4
records contiguously. When using a heap to store records,
the 4 records are stored contiguously in the heap, as shown
in Figure 5. Each hash table slot stores 4 signatures and one
offset. In the example, offset 103 points to the address in
the heap where 4 records are stored contiguously. Signature
85 corresponds to the key-value pair (“IRS”, “Austin, TX”)
and signature 42 is for the key-value pair (“OSU”, “Colum-
bus, OH” ). The remaining two signatures are zero as the
heap slots are empty.

Network: Issuing RDMA READ requests requires set-
ting up point-to-point Queue Pairs in the Reliable Connec-
tion mode between the server and the client. An RDMA
READ request can be signaled or unsignaled. Signaled re-
quests generate a work completion entry when the request
has finished; unsignaled requests do not generate a work
completion entry. One can know if the signaled requests
have finished or not by polling the completion queue. An
application cannot know if unsignaled requests have com-
pleted or not by polling the completion queue.

HERD [12] observed that not all requests need to be sig-
nalled when sending a batch of RDMA READ requests: The
ordering guarantee of Reliable Connection Queue Pairs im-
plies that all requests in the batch (in the same QP) must
have finished if the last signaled request is polled [13]. Our
design adopts the same idea when sending multiple RDMA
READ requests in one batch and only signals the last RDMA
READ request in the batch. All remaining requests are
unsignaled.

4.2 General procedure of processing lookups
A lookup operation returns all matching key-value pairs,

and transmits one or more RDMA READ requests. Algo-
rithm 1 shows the general procedure of processing lookup
operations, which is executed by multiple client threads in-
dependently. Each client thread maintains a queue called
request queue which buffers information about all outstand-
ing RDMA READ requests. Each client processes multiple
lookup operations simultaneously. First, the client schedules
a lookup operation by pushing one or more RDMA READ
requests into its request queue. The client thread keeps
posting RDMA READ requests in request queue until it
fills the send queue size of the connection (RDMA Queue
Pair), and then waits until all posted requests are completed.

4



Algorithm 1 General procedure of processing lookup
operations (underlined parts are exclusive for tracking
clusters)

request queue: a queue for RDMA READ requests
cluster set: a set containing m visited largest clusters

1: procedure handle lookups

2: while not terminated by terminator thread do
3: Fetch new lookups

4: for each new lookup do
5: if Linear Probing then
6: R = get read size()
7: Adjust the read size R based on cluster set
8: new reqs = READ R slots in hash table
9: else if Sequential Cuckoo then
10: new reqs = READ 1st candidate location
11: else if Parallel Cuckoo then
12: new reqs = READ k candidate locations

13: request queue.push(new reqs)

14: Post all requests in request queue

15: Update the cluster set

16: Wait until all posted requests complete
17: for each completed req in request queue do
18: PROCESS COMPLETED REQ(req)
19: request queue.remove(req)

When all requests have completed, the client starts process-
ing them. Processing a completed request may mean issuing
additional RDMA READ requests, in which case the client
thread pushes them into the request queue to be posted in
the next round. The procedures of scheduling new lookup
operations and processing completed requests will be de-
scribed in details in Section 4.3 and Section 4.5 for linear
and cuckoo hashing, respectively.

4.3 Linear probing with RDMA READ verbs
The linear probing algorithm varies in how it calculates

the read size, or the number of slots fetched in one RDMA
READ request. In fixed-size linear probing, the read size
is fixed regardless of the load factor of the hash table. In
variable-sized linear probing, the read size is determined
from evaluating the model that was described in Section 3.

The fixed-sized and variable-sized linear probing share the
same code path, since the read size can be regarded as a pa-
rameter used when posting RDMA READ requests. The
client schedules a lookup in linear probing by pushing a
RDMA READ request to the request queue fetching the
first R slots for linear probing, where R is the read size
(line 5-8 in Algorithm 1). Algorithm 2 shows the processing
procedure for completed RDMA READ requests with linear
probing for inline storage (procedure process inline) and
out-of-band storage (procedure process out of band).

Inline Storage: The procedure first checks for an empty
slot among the R slots that the completed RDMA READ
request has retrieved. If an empty slot is found, this means
that the client has encountered all records with matching
keys and the lookup finishes. If an empty slot was not en-
countered among the slots that were retrieved, the client
needs to issue another RDMA READ request to fetch the
next R slots, where R is computed by the model (see line 9
of Algorithm 2).

Algorithm 2 Process completed RDMAREAD requests for
linear probing (underlined parts are exclusive for tracking
clusters)

1: procedure process inline(req)
2: for every fetched slot in req do
3: if slot.key matches the probing key then
4: Report finding slot.value

5: else if slot is empty then
6: Buffer cluster information
7: Finish the corresponding lookup

8: break
9: if no empty slot is found then
10: new req = READ next R slots in hash table
11: request queue.push(new req)

12: procedure process out of band(req)
13: if req.dest == HASH TABLE then
14: for every fetched slot in req do
15: if slot.key sig matches the probing key then
16: new req = READ in heap at slot.offset
17: request queue.push(new req)
18: else if slot is empty then
19: Buffer cluster information
20: Finish the lookup if all issued reqs to heap

by the same lookup have been checked
21: break
22: if no empty slot is found then
23: new req = READ next R slots in hash table
24: request queue.push(new req)

25: else if req.dest == HEAP then
26: if req.key matches the probing key then
27: Report finding req.value

28: Finish the lookup if an empty slot has been found
and all issued reqs to heap by the same lookup

have been checked

Out-of-Band Storage: For each matching key signa-
ture in the fetched slots, the client needs to issue an RDMA
READ request to the corresponding key-value pair stored in
the heap (see lines 15-17 of Algorithm 2). If the completed
RDMA READ request does not contain an empty slot, the
client reads the next R slots (see lines 22-24 of Algorithm 2).
The lookup operation will finish only when it meets two con-
ditions: (1) all heap slots with matching key signatures have
been retrieved, and (2) an empty slot has been encountered
in the hash table.

4.4 Tracking clusters
Tracking clusters is exclusive for variable-sized linear prob-

ing lookups, and it shares a similar procedure compared with
cluster oblivious linear probing lookups in Section 4.3. The
difference is the client needs to record the information of m
largest clusters and determines the read size for each lookup
based on the cluster hints. The underlined parts in Algo-
rithm 1 and Algorithm 2 shows how the client records and
retrieves the information of clusters.

There can be multiple worker threads in a client probing
the hash table. Each worker thread records the cluster in-
formation independently. To better use the idle CPU cycles
when waiting for RDMA READ requests to be completed,
we first buffer the discovered cluster information (line 6
and 19 in Algorithm 2), only update the data structure con-
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taining the m largest clusters using the buffered cluster in-
formation after issuing all RDMA READ requests (line 15
in Algorithm 1).

The client determines the read size based on two cases:
1) If the hash value of the probing key h∗ is located inside
a cluster [hi, hi + leni) (see Figure 3a), the client is certain
about where the first empty slot is, so it issues one RDMA
READ request to read till the empty slot; 2) If the hash
value of the probing key h∗ is not located inside any cluster
[hi, hi + leni), the client is not certain about where the first
empty slot is, hence it uses the read size based on Section 3.4.

4.5 Cuckoo hashing with RDMA READ verbs
We implemented cuckoo hashing to compare the perfor-

mance with that of linear probing. The client needs to issues
k RDMA READ requests to check the candidate locations
determined by the k hash functions for probing a k-way
cuckoo hash table. According to how the k RDMA READ
requests are issued, there are two variants of cuckoo hashing
lookups; 1) Sequential Cuckoo, in which a lookup issues the
RDMA READ request checking the next candidate location
only after the previous candidate location is checked; 2) Par-
allel Cuckoo, in which a lookup issues all k RDMA READ
requests together checking all candidate locations when it is
scheduled.

The client follows Algorithm 1 to schedule the lookups. To
schedule a lookup for Sequential Cuckoo, the client pushes
one RDMA READ request to request queue to read the first
candidate location; for Parallel Cuckoo, the client pushes k

RDMA READ requests to request queue to read all candi-
date locations. The checking order of the k candidate loca-
tions for Sequential Cuckoo is random. Algorithm 3 shows
the procedures of the processing completed RDMA READ
requests of cuckoo hashing for both inline storage (proce-
dure process inline) and out-of-band storage (procedure
process out of band).

Inline Storage: As the key-value pairs are stored in
the hash table, the client returns the matching key-value
pair directly in line 4 of Algorithm 3.

Out-of-Band storage: The client needs to first issue an
RDMA READ request to fetch the key signature and offset
from the hash table, then issues an RDMA READ request
to the heap to fetch the corresponding key-value pair if the
key signature matches (see lines 13-15 of Algorithm 3).

Set Associativity: With inline storage, each RDMA
READ request issued to the hash table fetches 4 slots. With
out-of-band storage, each RDMA READ request issued to
the hash table fetches one slot which stores 4 key signatures
and 1 offset (see Figure 5), and each RDMA READ request
issued to the heap always fetches a single key-value pair.

5. EVALUATION
This section compares linear probing to cuckoo hashing

and evaluates the variable read size model to answer the
following questions:

§5.2 How do the lookup throughput and latency of prob-
ing in a 4-way set-associative cuckoo hash table com-
pare with probing in a cuckoo hash table without set
associativity? Does issuing RDMA READ requests se-
quentially or in parallel affect the lookup throughput
for cuckoo hashing?

Algorithm 3 Process completed RDMA READ re-
quests for cuckoo hashing.

1: procedure process inline(req)
2: for every fetched slot in req do
3: if slot.key matches the probing key then
4: Report finding slot.value

5: if req is the last unchecked probe of the lookup then
6: Finish the lookup

7: else if Sequential Cuckoo then
8: new req = READ next candidate slot if exists
9: request queue.push(new req)

10: procedure process out of band(req)
11: if req.dest == HASH TABLE then
12: for every fetched slot in req do
13: if slot.key sig matches the probing key then
14: new req = READ in heap at slot.offset
15: request queue.push(new req)

16: if req is the last probe of the lookup then
17: Finish the lookup if all issued reqs to heap

by the same lookup have been checked
18: else if Sequential Cuckoo then
19: new req = READ next candidate slot if exists

20: request queue.push(new req)

21: else if req.dest == HEAP then
22: if req.key matches the probing key then
23: Report finding req.value

24: Finish the lookup if all issued reqs to heap
by the same lookup have been checked

§5.3 Does probing in cuckoo hash tables have higher lookup
throughput than linear probing?

§5.4 What are the latency percentiles to complete a lookup
operation with cuckoo hashing and linear probing for
different hash table load factors?

§5.5 What is the prediction quality of the variable read size
model? Is the lookup throughput higher when using the
read size from the model instead of other read sizes?

§5.6 How sensitive is the model to misconfigured load factor?

§5.7 At what record sizes does storing records out-of-band in
a heap result in higher lookup throughput than storing
records inline in the hash table?

§5.8 How much faster can a client retrieve matching records
by tracking clusters when some keys appear more fre-
quently in a dataset than others? What is the overhead
of tracking clusters when the key frequency distribution
is uniform?

5.1 Experimental setup
Platform: All experiments were conducted in a shared,

56-node cluster where every machine is equipped with 2 Intel
Xeon E5-2680 v4 CPUs and one Mellanox ConnectX-5 EDR
InfiniBand adaptor card. Every machine runs CentOS Linux
release 7.4.1708 (Core). All experiments used two machines:
one server and one client.

Workload: We generated hash tables with 120 × 220

records and load factors that range from 0.25 to 0.95. Hence,
the total table size varies based on the load factor, rang-
ing from about 126 × 220 slots for the 0.95 load factor to
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480 × 220 slots for 0.25 load factor. The cuckoo hash ta-
ble is configured as a 3-way cuckoo hash table, which has
been shown to balance memory efficiency and performance
in prior work [20]. The record size ranges from 8 bytes to
128 bytes: the key size is fixed to 4 bytes, and the value size
varies from 4 bytes to 124 bytes depending on the experi-
ment. For each load factor, we pre-generated 10 different
hash tables storing random records.

Operation: In every experiment, the server randomly
picked one of the 10 pre-generated hash tables for the tested
load factor. The server then allocated and registered mem-
ory for RDMA accesses, and loaded the table into RDMA-
accessible memory. The server then waited passively until
all client operations are finished to close all connections, re-
lease the memory and shut down. The client spawned one
worker thread per CPU core for a total of 28 threads. Each
worker thread initialized one queue pair, connected with the
server and started probing. We used pthread barrier to
make sure all threads start and stop probing at the same
time. Each worker thread probed and returned all match-
ing records for a randomly chosen key. All worker threads
probed records for at least 100 seconds in each experiment.
All experiments were repeated at least 5 times. We report
averages from all runs, and also plot 95% confidence inter-
vals when the variability is significant.

In variable-sized linear probing, the number of bytes that
will be retrieved in each RDMA READ request is deter-
mined from the analytical model (see Section 3), and changes
based on the load factor. Fixed-size linear probing retrieves
the same number of bytes regardless of the hash table load
factor. Conventional wisdom suggests retrieving a few cache
lines per RDMA READ request, as retrieving less data will
not improve the latency of the RDMA operation. We thus
configured the read size of the fixed-size linear probing al-
gorithm to be 256 bytes in our experiments.

Network configuration: Both the client and the server
have one queue pair per CPU core, or 28 queue pairs in
total. When initializing a queue pair, the maximum num-
ber of outstanding RDMA READ requests on this connec-
tion can be configured by changing the max dest rd atomic

and max rd atomic parameters. Prior work uses different
settings: DrTM [4] and online tutorials [2] configure 1 out-
standing RDMA READ request per queue pair, while FaSST
configures 16 outstanding requests [14]. We observed that
the lookup throughput increased by as much 4× after chang-
ing the maximum outstanding READ requests from 1 to
16 (where 16 is the maximum number our hardware can
support). We thus set the number of outstanding RDMA
READ requests to 16 to utilize the maximum parallelism
between requests.

Another important configuration parameter is the size of
the send queue in every queue pair. When we measured the
throughput of lookup operations, the send queue size was set
to the maximum value supported by our hardware (8192 re-
quests) to simulate the highest possible level of offered load.
When we measured the latency of lookup operations, the
send queue size was set to the minimum number of RDMA
READ requests that are needed per lookup (that is, 1 for
Linear probing and Sequential Cuckoo, and 3 for Parallel
Cuckoo) to simulate an idle system.

Model parameters: The parameters for Eq. 2 and
Eq. 3 are set as follows in our experiments: The link band-
width l is 100Gbps, which is the InfiniBand EDR bandwidth,

and hence the coefficient α (signalling rate) is 0.08 ns/byte.
When using inline storage, the slot size w equals the record
size (8, 32 or 128 bytes, respectively). When storing records
in the heap, each hash table slot in linear probing has one
1-byte key signature and 4-byte offset, so w = 5 bytes.
Following the model bootstrapping procedure described in
Section 3.5, the peak messaging rate ρ0 was 87.17 million
RDMA READ requests per second and the constant term
c (fixed cost of initiating a new RDMA request) was 1,290
ns. We built a simple benchmarking program for this pur-
pose that uses the same network configuration as described
earlier in this section.

5.2 Different cuckoo hashing variants
As presented in Section 4, probing in cuckoo hashing can

be done sequentially (Sequential Cuckoo) or in parallel (Par-
allel Cuckoo). In addition, the associativity of the table can
be configured: one can allow multiple records in one slot or
can allow only one record per hash slot. This experiment
compares the lookup throughput of cuckoo hashing using
different design choices with 8-byte records.

Figure 6 plots the lookup throughput of four variants
with different load factors. For both 4-way associative and
non-associative hash tables, the throughput difference be-
tween Parallel Cuckoo and Sequential Cuckoo is not sta-
tistically significant at the 5% level across all load factors.
The throughput difference between a non-associative and a
4-way set-associative cuckoo hash table is statistically signif-
icant, but on average the throughput of 4-way set-associative
cuckoo hash tables is only 3% lower. However, associativ-
ity is very important for resolving collisions when creating
a cuckoo hash table at high load factors: note that Figure 6
does not show results from non-associative hash tables at
95% load, because pre-generating the tables was taking im-
practically long (weeks) to complete due to the very long
displacement sequences for every insertion. (This finding is
corroborated in prior work that points out that insertion is
prohibitively expensive in non-associative hash tables with
load factors greater than 50% [8].) The remainder of this
evaluation uses 4-way set-associative hash tables for all ex-
periments with cuckoo hashing.
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Figure 6: Throughput comparison for cuckoo hashing with
and without set-associativity for different load factors. The
error bars show the 95% confidence interval.
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Figure 7: Lookup throughput of parallel cuckoo hashing
with 4-way set associativity, fixed-sized linear probing, and
variable-sized linear probing (with and without the band-
width constraint of Eq. 2).

5.3 Linear probing vs. cuckoo hashing
This experiment compares the lookup throughput in lin-

ear probing and cuckoo hashing to understand trade-offs be-
tween probing in different hash tables and how throughput
changes at different load factors. We used 8-byte records in
this experiment. Figure 7 plots the lookup throughput of lin-
ear probing and cuckoo hashing at different load factors. For
cuckoo hashing, we only show the Parallel Cuckoo variant
(labeled “Cuckoo”) as the throughput difference of different
variants is not statistically significant (see Section 5.2). For
variable linear probing, the dotted line labeled “Var. Lin-
ear (uncons.)” shows the throughput if the model were not
bound by the bandwidth constraint (Eq. 2). Figure 7 shows
that the throughput of variable-sized linear probing was up
to 2.8× higher than cuckoo hashing and up to 1.7× higher
than fixed-size linear probing, except for very highly loaded
hash tables. Cuckoo hashing only outperformed linear prob-
ing at very high utilization (90% and above), but heavily
loaded tables would be unrealistic configuration choices in
practice due to the prohibitively large number of record dis-
placements on every update to the hash table.

To provide additional insights into the throughput of the
algorithms, we show the number of RDMA requests per
lookup and the number of slots retrieved per RDMA READ
for different linear probing variants in Table 1. In addi-
tion, we show the effective bandwidth utilization (that is, the
bandwidth used to transmit the message payload only) for
each algorithm in Figure 8. Cuckoo hashing was always lim-
ited by the messaging rate and not the bandwidth because it
transmitted 3 RDMA requests per lookup regardless of the
load factor. In lightly loaded hash tables, the weakness of
fixed-size linear probing was reading too much data: fixed-
size linear probing used almost 8 GB/sec of bandwidth (see
Figure 8) and almost never issued more than one RDMA
request at 0.25 and 0.5 load factors. The efficiency of fixed-
size linear probing quickly deteriorated at high load: when
the hash table was 95% full, 48% of the probes required 4
or more RDMA requests, and 13% of the probes required 16
or more RDMA requests.

Variable-sized linear probing increases the read size as
the load factor increases to accommodate longer expected

Table 1: Average RDMA requests per lookup and number
of slots read for different algorithms with 8-byte records.
Fixed Linear always reads 32 slots. Cuckoo always issues 3
RDMA requests per lookup and always reads 12 slots.

RDMA requests per lookup Read size (slots)

Load
factor

Fixed
Linear

Var. Linear
(uncons.)

Variable
Linear

Var. Linear
(uncons.)

Variable
Linear

0.25 1.00 1.03 1.03 5 5
0.50 1.00 1.03 1.03 13 13
0.65 1.01 1.02 1.04 29 23
0.80 1.22 1.02 1.39 96 23
0.85 1.53 1.01 1.85 174 23
0.90 2.46 1.08 3.17 201 23
0.95 7.41 1.16 10.05 547 23

probe sequences, as shown in Table 1. Changing the read
size according to the analytical model without any band-
width constraint (“Var. Linear (uncons.)”) resulted in 89%
or more of all lookups needing only 1 RDMA READ re-
quest across all load factors. However, as shown in Table 1,
the read size rapidly increases from 5 slots to hundreds of
slots at load factors of 80% and higher. This makes the
unconstrained variable linear probing algorithm limited by
the network bandwidth (see Figure 8), which is 12.5 GB/sec
for InfiniBand EDR; throughput degrades by up to 2× over
fixed-size linear probing (see Figure 7). By imposing the
bandwidth constraint, variable-sized linear probing retains
its good performance at low load factors and limits the read
size to not saturate the network at high load.

5.4 Latency of different probing strategies
We measured the latency to complete a lookup operation

with different probing strategies. In this experiment the
record size is 8 bytes and each thread worker only issues one
lookup operation at one time. Figure 9 shows the latency
for cuckoo hashing and linear probing when the load factor
ranges from 25% to 95%.

As expected, the latency of the cuckoo hashing variants
was not sensitive to the load factor, as cuckoo hashing per-
formed the same number of RDMA requests regardless of
the load factor. Comparing the two cuckoo hashing vari-
ants, checking the 3 possible locations sequentially (Sequen-
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tial Cuckoo) had 1.7× higher latency than checking them in
parallel (Parallel Cuckoo). Given that the lookup through-
put of Sequential Cuckoo is indistinguishable from Parallel
Cuckoo (see Figure 6), Parallel Cuckoo should be the pre-
ferred choice for probing the cuckoo hash table.

When comparing linear probing with cuckoo hashing, at
load factors up to 65% all linear probing variants finished
about 1.8us faster than Parallel Cuckoo hashing (2.9us vs.
4.7us). At 80% load, the median latency of the linear prob-
ing variants was unchanged from lower load factors at 2.9us,
but the 90-th percentile of latency is now higher for Fixed
Linear and Variable Linear than Parallel Cuckoo hashing
(5.4us and 6.2us, respectively, versus 5.1us). Median laten-
cies for linear probing become comparable to cuckoo hash-
ing at 90% load, and cuckoo hashing outperforms the lin-
ear probing variants at 95% load. As already shown in
Table 1, the growing latency of fixed-sized linear probing
and variable-sized linear probing is due to the additional
RDMA READ requests required per lookup. Algorithms
that can maintain a low number of RDMA READ requests
per lookup as the load factor increases, such as the uncon-
strained version of linear probing, have an advantage when
it comes to median and tail latency.

5.5 Prediction quality of the model
This experiment evaluates whether the read size given

by the theoretical model for variable-sized linear probing
achieves the best throughput. Each record is 8 bytes and
is stored inline. Figure 10a shows the measured lookup
throughput of linear probing at different read sizes for load
factors 50% and 85%. Figure 10b plots the predicted cost
E[X(R)] ·T (R) for the theoretical model (see Eq. 1) for load
factors 50% and 85%. The data points shown in circles corre-
spond to the read sizes that were picked by the variable read
size model. The ranges of the horizontal axis are different
between the two plots because the cost model is not eval-
uated for read sizes that exceed the bandwidth constraint
(Eq. 2), shown as a dashed vertical line in Figure 10b.

The results show that using the model to obtain the opti-
mal read size achieved the highest lookup throughput com-
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Figure 10: The measured throughput and the predicted cost
for different read sizes for 50% and 85% load factors.

pared to picking other read sizes: for both 50% and 85%
load factors, the observed throughput was at the peak of
the curve in Figure 10a. The difference in the throughput
between the chosen read size and read size 7 for load factor
50%, as well as the chosen read size and read sizes 18 and
32 for load factor 85% is not statistically significant at the
0.05 level.

5.6 Model sensitivity to the load factor
One question is how sensitive is the reported throughput

of variable-sized linear probing to different load factors, as
the actual load of a hash table may be different than as-
sumed or sensed remotely through a sampling process. Of
particular interest is lightly-loaded hash tables where the
configured read size can vary by as much as 4.6×, as shown
in Table 1 under column group “Read size (slots)”. (A wel-
come side-effect of the bandwidth constraint is that it equal-
izes the read size configuration at high load factors.)

Table 2 shows the throughput of variable-sized linear prob-
ing if the load factor assumed by the model is different from
the actual load factor. The row names are the actual load
factors and the column names are the load factor assumed
by the model; the cell reports the lookup throughput under
the condition determined by the row and column. The diag-
onal cells show the lookup throughput when the actual load
factor is the same as the load factor assumed by the model,
and correspond to the “Variable Linear” line in Figure 7.
The lookup throughput will drop by at most 20% (when
assuming load factor of 65% but encountering 50%) if the
model mistakenly picks the neighboring load factor among
the three load factors in the table. We conclude that in

Table 2: Lookup throughput (millions/second) under differ-
ent combinations of actual load factors and assumed (con-
figured) load factors.

Assumed load

Actual load 0.25 0.50 0.65

0.25 50.8 43.0 34.5
0.50 42.3 43.9 35.1
0.65 31.0 39.2 35.2
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Figure 11: Lookup throughput of inline storage and out of
band (heap) storage for all algorithms with 65% load fac-
tor. Solid colors indicate inline storage, while textured fills
indicate out of band (heap) storage.

lightly-loaded hash tables variable-sized linear probing has
better throughput than fixed-size linear probing (cf. “Fixed
Linear” in Figure 7) even when the load factor is signifi-
cantly misconfigured.

5.7 Out­of­band storage
Storing records outside the hash table improves the local-

ity of the index structure and becomes appealing as record
sizes increase. To understand when one should use out-of-
band storage, we ran an experiment comparing the lookup
throughput of probing records of different sizes in the hash
table (inline storage) and in a separate heap (out of band
storage). This experiment uses a load factor of 65% and
varies the record size from 8 bytes to 128 bytes.

Figure 11 shows the lookup throughput for cuckoo hashing
(parallel variant), fixed-sized linear probing and variable-
sized linear probing for both inline and out of band stor-
age. Our first observation is that at this load factor the
best-performing algorithm is variable-sized linear probing
for all record sizes and both inline and out of band stor-
age. (This generalizes the result first seen in Figure 7.) The
throughput when storing records inline is very sensitive to
the record size: the throughput of the best-performing algo-
rithm, Variable Linear, drops from 36M lookups per second
to 8M lookups per second when the record size increases
from 8 to 128 bytes. The throughput is less sensitive to
changes in the record size for out-of-band storage: the best-
performing algorithm, Variable Linear, only drops from 23M
lookups per second to 19M lookups per second when the
record increases from 8 to 128 bytes.

Linear probing is more sensitive to changes in the record
size than cuckoo hashing. This sensitivity is due to the
different number of slots the linear probing algorithms will
retrieve at different record sizes. As shown in Table 3, for
inline storage and 128-byte records, all algorithms were read-
ing 2-6 slots per RDMA READ. When the data is stored out
of band, the slot in the hash table only takes 5 bytes (4-byte
offset and 1-byte key signature, as explained in Section 4.1),
and hence one RDMA request will retrieve 30-50 slots. As
shown in Table 4, this allows the linear probing algorithms

Table 3: Number of slots retrieved per RDMA READ re-
quest for different hashing methods for inline and out-of-
band storage. Load factor is 65%.

Read size (slots)
Inline Out of band

Record size (bytes) 8 32 128 Any

Parallel Cuckoo 4 4 4 4
Fixed Linear 32 8 2 51
Variable Linear 23 9 6 29

to almost always complete in a single lookup to the hash
table with out-of-band storage.

The trade-off for out-of-band storage is making RDMA
READ requests to the hash table more efficient (smaller
hash slots) in exchange for additional RDMA READ re-
quests to the heap (to retrieve the payload). Take the variable-
sized linear probing as an example. When record size is 128
bytes, probing records in out-of-band storage means retriev-
ing 623 fewer bytes per RDMA READ request to the hash
table compared to the case of inline storage. Although one
needs about 1.04 additional RDMA READ requests to the
heap (see Table 4) compared to inline storage, the overall
lookup throughput of probing records stored in the heap is
2.4× higher than when storing them inline. Overall, the
results show that out of band storage will result in higher
throughput when the record size is 32 bytes or more.

5.8 Cluster tracking
This experiment investigates the effectiveness of tracking

clusters for variable-sized linear probing when the keys in
the hash table have a skewed frequency distribution. In
this experiment, 8-byte records are stored in a 65% loaded
hash table, and the 4-byte keys follow the Zipf distribution.
The read size is 23 slots for cluster-oblivious reads, as com-
puted by the model (Eq. 1 and Eq. 2). When tracking clus-
ters, each thread maintains the 1000 largest clusters it has
encountered so far. The experiment starts with an empty
cluster tracking set and the implementation tracks the 1000
largest clusters at runtime. (See Section 4.4 for details.)

Figure 12 shows the rate of reading matching records with
and without cluster tracking for different levels of skew.
(This experiment reports the rate of reading matching records
instead of the lookup throughput because the duration of a
single lookup varies with a skewed key distribution based
on the number of matching keys a lookup finds.) Tracking
clusters improves the rate of finding matching records up to
1.7× compared with cluster-oblivious reading when the keys

Table 4: RDMA READ requests per lookup to the table and
the heap for out-of-band storage and 65% load factor.

RDMA requests per lookup,
out of band storage

To hash table To heap

Parallel Cuckoo 3.00 1.08
Fixed Linear 1.00 1.04
Variable Linear 1.02 1.04
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Figure 12: Rate of finding matching records for variable-
sized linear with the cluster-oblivious model and when track-
ing clusters at 65% load factor and varying skew.

are highly skewed. Equally importantly, there is no impact
on throughput by tracking clusters when the distribution is
uniform or has low skew.

Figure 13 shows the benefit of embedding cluster hints in
the model through an example. This example shows the read
size chosen by the cluster tracking model at a particular dis-
tance from the cluster start if a cluster starts at offset x = 0
and spans 10 slots. Starting from left to right, when reading
far behind the start of the cluster, such as at x = −30, the
cluster is too far away to influence the output of the model
at both load factors, hence the picked read size is the same
as the cluster-oblivious strategy. If the read would retrieve
slots inside the cluster, as seen for example at x = −20
for the 65% load factor, the cluster tracking model recom-
mends reading fewer slots than the cluster-oblivious model
as it determines that the cost of a larger read outweighs the
probability of having to read that far. If reading close to
the start of the cluster or inside it, such as at x = −4, the
cluster tracking model chooses to read until the end of the
cluster, which may be less than (65% load factor) or greater
than (25% load factor) the choice of the cluster-oblivious
model. Once the read offset is past the end of the cluster
at x = +10 and greater, the read size reverts to the out-
put of the cluster-oblivious model. To summarize, tracking
clusters makes variable-sized linear probing cover the entire
next nearest cluster, if it is close enough, and thus reduces
the number of RDMA READ requests to complete a lookup
when encountering long probe sequences.

6. RELATED WORK
Many researchers have studied cuckoo hashing. Alcantara

et al. [1] studied using cuckoo hashing on GPUs. Li et al.
[16] proposed the idea of Multi-copy Cuckoo to address the
issue of collision resolution for cuckoo hashing at high load
factors. CUCKOOSWITCH [24] is a software-based Ether-
net switch adopting cuckoo hashing. Silt [17] and MemC3
[8] adopted cuckoo hashing for their systems.

Focusing on distributed hash tables, Pilaf [20] uses cuckoo
hashing and stores the actual key-value pairs separately in
a heap. A client issues one-sided RDMA READ requests
fetching one candidate slot per time from the hash table, and
issues extra RDMA READ requests to fetch key-value pairs
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Figure 13: The read size chosen by the cluster-tracking
model at different read offsets from the start of a cluster.
The cluster in this example starts at x = 0 and spans 10
slots until x = 9.

in the heap using the offsets stored in the corresponding in-
use slots. Pilaf also proposes a basic design that uses linear
probing, which keeps fetching one slot per RDMA READ re-
quest from the hash table and using another RDMA READ
request fetching the key-value pair in the corresponding off-
set if the slot is not empty. This procedure is repeated until
the requested key is found. FaRM [7] also uses a heap to
store key-value pairs separately.

Nessie [3] adopts a symmetric system architecture in which
each node contains a cuckoo hash table and a heap storing
actual key-value pairs. A hash table entry can point to a
key-value pair stored in a remote heap. Nessie uses one-
sided RDMA READ request to fetch the data entries and
index entries if stored remotely. In Nessie, a lookup contains
a forward pass to search for data entry and a reverse pass
to verify consistency due to the potential concurrent insert
and delete operations.

MICA [18] uses a chaining hash table to locate key-value
pairs in a log structure. In lossy mode, the oldest entry
in the hash table will be evicted when inserting a key to
a full bucket. MICA adopts exclusive access in which each
CPU core can only access its assigned partition of data. A
client sends an RPC-based request via Intel’s Data Plane
Development Kit (DPDK) the server, and the request will
be re-direct to the CPU core that can access to the corre-
sponding partition.

The key-value stores of HERD [12] and FaSST [14] are
based on MICA, and both use RDMA-based RPCs for re-
quests and data exchange between nodes. HERD’s RPCs
combine both one-sided and two-sided RDMA verbs: a client
issues requests to the server by writing to server’s buffer us-
ing one-sided RDMA WRITEs, and the server sends back
results via two-sided RDMA SEND; FaSST uses two-sided
RDMA SEND/RECV requests to exchange packets contain-
ing the requests and the data, and applies optimizations such
as co-routines and doorbell batching.

Hopscotch hashing [10] is a hashing scheme that also re-
quires a small and constant number of probes to find a key.
FaRM [7] adopts a variant of hopscotch hashing by com-
bining chaining and associativity due to the trade-off be-
tween space efficiency and the size and number of one-sided
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RDMA READ requests used for lookups. For a lookup, it
first performs a one-sided RDMA READ request to fetch
two buckets containing H slots in total, where H is the size
of the neighborhood of hopscotch hashing that guarantees
to contain the lookup key. If the lookup fails, it continues
searching along the linked chain of overflow blocks. Debnath
et al. [6] showed hopscotch hashing has better performance
than cuckoo hashing for write-intensive workload over phase
change memory (PCM).

RDMA is not only used for key-value stores but also dis-
tributed Online Transactional Processing (OLTP) systems.
DrTM [4] combines HTM and RDMA for distributed trans-
actions. DrTM+H [22] proposes that a hybrid of one-sided
and two-sided RDMA verbs is better for distributed OLTP
systems. NAM-DB [23] proposes another design for dis-
tributed transaction processing that leverages RDMA.

The design underpinnings of our system follow best prac-
tices in prior work. Ruhela et al. [21] emphasized the over-
lap of computation and communication is critical for good
performance, and in our work we updated the data struc-
ture maintaining the cluster set only when waiting for the
RDMA READ requests to be completed. Other works have
also shown how to better use RDMA [13, 19], as well as
use RDMA for other data structures, such as trees [26]. In
our design, the lookups being processed in a batch do not
necessarily belong in the same processing stage: lookups in
the same batch are not synchronized, they may not be issu-
ing the same number of RDMA READ requests, and some
lookups may target the heap while others target the hash ta-
ble. This idea was extended from the asynchronous progress
design of DART [25].

7. CONCLUSION AND FUTURE WORK
This paper studies using one-sided RDMA verbs to to

probe remote hash tables, and finds that linear probing with
fixed-size reads either reads too little and hence needs many
round-trips at high load factors, or reads too much and
wastes network bandwidth at low load factors. The paper in-
vestigates variable-sized linear probing that relies on an an-
alytical model to pick the read size. Using this model, linear
probing with variable-sized reads achieves up to 1.7× higher
throughput and never performs worse than fixed-size read-
ing; variable-sized linear probing also outperforms cuckoo
hashing by as much as 2.8× for load factors less than 90%.
The results also show lookups for small records (less than
32 bytes) have better performance when data is stored in-
line (inside the hash table), while records larger than 32
bytes are better suited for storing out of band in a heap.
Finally, we also show how to augment the variable-sized lin-
ear model with cluster hints from prior probes, which works
especially well for skewed key distributions as it improves
the key matching rate by up to 1.7×.

The results point to a number of promising avenues for
future work. First, the comparison between inline and out
of band storage suggests that robust lookup performance for
workloads with variable-length records can only be achieved
through a hybrid layout, where the insertion algorithm au-
tomatically decides whether to place a record inline or out
of band. Second, the results show that cuckoo hashing
transmits multiple small messages and uses bandwidth very
judiciously. This is both a blessing and a curse: cuckoo
hashing will perform well in bandwidth-constrained settings,
but cannot fully utilize the network bandwidth with small

messages. In contrast, linear probing requires substantial
bandwidth as the load factor approaches or exceeds 80%.
A promising direction for future work is to use two-sided
send/receive communication to conserve network bandwidth
with linear probing in highly-loaded hash tables. The rela-
tive performance of two-sided linear probing over one-sided
cuckoo hashing at high load factors is an open question.
Finally, a limitation of the InfiniBand verbs interface is the
requirement to access contiguous remote memory in each re-
quest, which means that independent remote reads require
multiple RDMA requests. Other network interfaces, such as
Cray DMAPP [5], can access non-contiguous remote loca-
tions in a single request through a gather network primitive.
There is unexplored potential to substantially improve the
performance of independent reads, both within and across
lookups, with a gather primitive in future work.
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