
High-performance main memory database management systems

by

Spyridon Blanas

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2013

Date of final oral examination: 07/09/2013

The dissertation is approved by the following members of the Final Oral Committee:

Jignesh M. Patel, Professor, Computer Sciences

David J. DeWitt, Emeritus Professor, Computer Sciences

AnHai Doan, Associate Professor, Computer Sciences

Jonathan T. Eckhardt, Associate Professor, Management and Human Resources

Jeffrey F. Naughton, Professor, Computer Sciences

David A. Wood, Professor, Computer Sciences

c© Copyright by Spyridon Blanas 2013

All Rights Reserved

i

To Katerina, for all she went through.

iii

Acknowledgments

This six-year endeavor would not have been as didactic had I not been

surrounded with outstanding friends, peers and mentors that embraced the

uncertainty associated with research, promoted excellence and helped me

distinguish what is important from what is urgent. This section represents

an incomplete list of the people who helped create this unique environment

that allowed me to grow both personally and professionally.

I thank my advisor, Jignesh Patel, for teaching me perseverance, sup-

porting me in mistakes, never using his absolute power of authority to re-

solve a conflict or dictate a direction, and —most importantly— for being

patient with my volatile Mediterranean temperament. David DeWitt fi-

nancially supported this endeavor, and frequently dispensed his unique mix

of deeply personal advice with sharp and timely criticism. Jeff Naughton,

AnHai Doan, and Chris Ré made me appreciate the breadth of the data

management field and sharpened my critical thinking through numerous

discussions. David Wood, Mark Hill, and Mike Swift kept me connected

with the computer architecture and operating systems communities, and

welcomed me to tap into the tangible, but more importantly the intangi-

ble resources of the Multifacet group. I thank them all for their wonderful

advice throughout the years.

During my studies, I was extremely fortunate to extensively interact

with researchers and engineers in industry. I thank Alan Halverson, Hideaki

Kimura, Willis Lang, Rimma Nehme, Eric Robinson, Srinath Shankar,

iv

Nikhil Teletia, Dimitris Tsirogiannis, Dhongui Zhang, and Melody Bakken

at the Microsoft Jim Gray Systems Lab for the wonderful daily interactions,

and their unique industrial perspective. Cristian Diaconu, Craig Freedman

and Mike Zwilling helped make the summer of 2009 memorable, productive

and enjoyable. After working with them for a few months, I learned to

respect the effort involved in building working, production-quality systems.

Paul Larson helped me realize the benefits of being organized and taking

strategic small steps every day. I also thank Ravi Ramamurthy, Arvind

Arasu, Ken Eguro and Raghav Kaushik for teaching teamwork through ex-

ample in the summer of 2012. Finally, Jun Rao, Vuk Ercegovac and Eugene

Shekita introduced me to industrial research, and they deserve credit for

convincing me to stay in the Ph.D. program at the end of my first year.

Working with all these talented individuals made me appreciate the simple

and practical solutions to complex research problems, and I thank them for

that lesson.

The most memorable and invaluable part of my education has been the

amazing network of current and former students who were always eager

to provide advice, critical comments and support. This network includes

Arkaprava Basu, Victor Bittorf, Craig Chasseur, Fei Chen, Jaeyoung Do,

Yasuko Eckert, Avrilia Floratou, Dan Gibson, Chaitanya Gokhale, Cindy

Rubio González, Yeye He, Allison Holloway, Derek Hower, Asim Kadav,

Arun Kumar, Willis Lang, Yinan Li, Jiexing Li, David Malec, Ian Rae, So-

mayeh Sardashti, Mohit Saxena, Rathijit Sen, Warren Shen, Swaminathan

Sundararaman, Khai Tran, Haris Volos, Ba-Quy Vyong, and Chen Zeng.

I would have learned far less in graduate school had it not been for the

countless interruptions and impromptu discussions with these students.

In addition, I would also like to thank Tycho Andersen, Polina Dudnik,

Tristan Ravitch, Dana Vantrease, Haris Volos, and Dalibor Zelený, for tol-

erating me during a hard transition from the relaxed, warm Greek island

of Crete to the sub-zero temperatures of Wisconsin during the first winter.

v

The regular social activities of the following Greek students in Madison

helped remind me of home, and prevented my Greek from deteriorating.

I would like to thank Aris Avgoustis, Michalis Bachtis, Avrilia Floratou,

Nikos Georgiou, George Manoussakis, Kostas Mavrakakis, Charalambos

Michael, Loizos Solomou, Giorgos Stratis, Mina Syrika, Joanne Tsarouha,

Haris Volos, and Andreas Vlachos for all our fun outings.

Looking back, I would have never considered relocating to a different

continent to pursue a graduate degree without the full support of my family,

Stathis, Maria and Konstantina. Thank you for tirelessly encouraging me

to stay curious and pursue my dreams.

Finally, and most importantly, a special thank you goes to Katerina,

who reminded me of the existence of other priorities in life every time I had

nearly convinced myself that there were none. Katerina, thank you for all

the sacrifices you have made for me to reach this point.

Although all these individuals contributed to this dissertation in varying

degrees and in different ways, all errors and omissions herein are my sole

responsibility.

vi

Contents

Contents vi

List of Tables viii

List of Figures ix

Abstract xi

1 Introduction 1

1.1 Opportunities for the next generation of database manage-

ment systems . 2

1.2 Outline . 7

2 Redesigning the hash join algorithm for single-socket, multi-

core CPUs 9

2.1 Introduction . 10

2.2 Related work . 13

2.3 The multi-core landscape . 15

2.4 Different hash join variants 16

2.5 Experimental evaluation . 24

2.6 Experimenting with a different implementation 47

2.7 Concluding remarks . 53

3 Equi-join algorithms for memory-resident data 55

vi

vii

3.1 Introduction . 56

3.2 Recent related work . 59

3.3 Join algorithms . 59

3.4 Evaluation methodology . 71

3.5 Experimental results . 74

3.6 Concluding remarks . 95

4 Concurrency control for main memory databases 97

4.1 Introduction . 98

4.2 Related work . 99

4.3 Multi-version storage engine 101

4.4 Optimistic transactions . 117

4.5 Pessimistic transactions . 126

4.6 Experimental results . 137

4.7 Concluding remarks . 147

5 Conclusions and future work 149

Bibliography 153

viii

List of Tables

2.1 Platform characteristics. 22

2.2 Shorthand notation used when presenting the results 32

2.3 Hardware events for the uniform dataset 33

2.4 Hardware events for the high skew dataset 34

2.5 Impact of simultaneous multi-threading (Intel Nehalem) 37

2.6 Impact of simultaneous multi-threading (Sun UltraSPARC T2) . 38

2.7 Overhead of materialization . 42

2.8 Sensitivity to join input cardinalities 43

2.9 Radix partitioning efficiency . 49

2.10 Cycle breakdown during radix partitioned hash join. 52

3.1 Join query plans that are considered 72

3.2 Time breakdown per operator, for the uniform dataset. 78

3.3 Wide-tuple dataset properties 91

4.1 Version visibility outline . 111

4.2 Version visibility when version’s Begin field is not a timestamp 112

4.3 Version visibility when version’s End field is not a timestamp . . 114

4.4 Throughput at higher isolation levels 142

4.5 TATP results. 147

viii

ix

List of Figures

1.1 Performance per thread from TPC-C and TPC-H results 3

1.2 Inflation-adjusted price of DRAM memory per megabyte 6

2.1 Cycles per output tuple for the uniform dataset. 23

2.2 Cycles per output tuple for the low skew dataset. 27

2.3 Cycles per output tuple for the high skew dataset. 31

2.4 Speedup over single threaded execution, uniform dataset. 36

2.5 Time breakdown of the radix join. 39

2.6 Performance on Intel Nehalem with uniform dataset and |R|=|S|. 44

2.7 Sensitivity to join selectivity. 46

3.1 Results when S is in random order, uniform dataset 77

3.2 Results when S is sorted in join key order, uniform dataset . . . 82

3.3 Results when S is in random order, skewed dataset 85

3.4 Results when S is sorted in join key order, skewed dataset . . . 89

3.5 Join response time with wider tuples. 93

4.1 Example account table with one hash index. 105

4.2 State transitions for each transaction. 108

4.3 Possible transaction validation outcomes. 121

4.4 Scalability under low contention. 139

4.5 Scalability under high contention. 141

4.6 Impact of read-only transactions on throughput (low contention).143

x

4.7 Impact of read-only transactions on throughput (high contention).144

4.8 Update throughput with long read transactions. Each update

transaction performs ten reads and two updates. 145

4.9 Read throughput with long read transactions. Each long read

transaction performs one million reads (10% of the database). . 146

xi

Abstract

Decision makers today want to analyze constantly evolving datasets of un-

precedented volume and complexity in real time. This poses a significant

challenge for the underlying data management system. In the past, data

processing could scale to meet the growing demand with few changes to the

individual software components mainly due to a sustained improvement in

single-threaded processor performance. Because of fundamental technolog-

ical limitations, however, single-processor performance has recently been

increasing much more slowly than in the past.

It is not uncommon today for a single database server to be able to con-

currently execute instructions from hundreds of threads and store terabytes

of data in main memory. Commercial database management systems, how-

ever, have not been designed for such hardware; they treat main memory as

a vast software-controlled cache, and commonly rely on multiple concurrent

requests to fully utilize a modern system. My thesis is that we can improve

data processing efficiency by one order of mangitude if we redesign the data

processing kernel to better leverage existing hardware.

This dissertation makes three contributions to main memory database

management systems. The first contribution is a simple non-partitioned

hash join for memory-resident data that has comparable performance with

much more sophisticated hash join methods. The second contribution is

demonstrating that hash join plans are commonly advantageous over sort-

merge join plans in a main-memory setting because they commonly have

xii

shorter query response times while reserving less working memory. The

third contribution is the design and implementation of two multi-version

concurrency control schemes that are optimized for main memory storage,

and can achieve throughputs of millions of transactions per second without

sacrificing transactional atomicity, isolation or durability.

This dissertation points to promising directions for future performance

improvements in the database system kernel, and identifies key open prob-

lems in the areas of query execution, transaction processing and query op-

timization.

1

Chapter 1

Introduction

Data today is being generated and collected at an unprecedented rate, with

data-driven decision making largely replacing the ad-hoc models of the past

in industries such as retailing, healthcare, disaster management, finance,

and more. Decision makers today demand real-time answers to queries

that involve an exponentially increasing amount of data. The performance

of database management systems had, until recently, been improving expo-

nentially to match this demand. Jim Gray notes that transaction processing

performance has achieved an average improvement of 68% per year, slightly

higher than Moore’s law [39].

The primary technique used to process data quickly and cost-effectively

has been to scale out, that is, distribute data and computation among mul-

tiple computer systems. Fueled by the economies of scale, corporations and

governments are aggressively building data centers containing hundreds of

thousands of computing nodes. Further data center expansion, however,

is likely to encounter significant headwinds, primarily due to high energy

consumption, and thus deliver diminishing returns in the future. As a conse-

quence, using a single system efficiently is becoming a crucial consideration.

In the past, the data processing pipeline could scale to meet the grow-

ing demand with few major changes to the underlying software components.

2

Two factors mainly contributed to this phenomenon. The first was a sus-

tained 52% yearly performance improvement in performance that was pow-

ered by innovative computer architecture research and an impressive 40%

growth in clock rates per year [44]. The second factor was the constantly

diminishing price per gigabyte of hard disk storage. As a consequence, com-

puter manufacturers could deliver a new generation of computer systems

every year with faster CPUs and more aggregate disk bandwidth for the

same cost. Such a system could complete last year’s data processing tasks

in a fraction of the time, and without any changes to the software. In the

last few years, however, physical limitations, such as the heat dissipation

rate, have caused the clock rate growth to virtually stall. Single-processor

performance has increased much more slowly than in the past, only about

22% per year [44].

We are now facing the challenge that bigger data centers with newer

computer systems running old software will fail to deliver answers at the

cost and speed that decision makers expect. This dissertation explores a

different approach to improve the efficiency of the data processing pipeline:

redesign the data processing software to better exploit existing hardware.

In this evolving architectural landscape, database management systems

have a unique opportunity. The relational data model allows user appli-

cations to interact with data through a declarative query language that

captures intent, leaving the system free to choose the optimal execution

strategy. Innovation in this area can have a transformative impact on the

entire big data ecosystem.

1.1 Opportunities for the next generation

of database management systems

One potential solution to improve performance in light of these fundamen-

tal changes in hardware would be to adjust the various configuration knobs

3

2001 2003 2005 2007 2009 2011 2013

Year

5000

10000

20000

50000

100000

T
h
ro

u
g
h
p
u
t

(t
p
m

C
)

p
e
r

th
re

a
d

IBM
Microsoft
Oracle
Other vendors

(a) Transaction processing performance per thread, measured in TPC-C transactions
completed per minute.

2003 2005 2007 2009 2011 2013

Year

200

500

1000

2000

5000

10000

20000

T
h
ro

u
g
h
p
u
t
(Q

p
h
H

)
p
e
r

th
re

a
d

IBM
Microsoft
Oracle
VectorWise
Other vendors

(b) Decision support performance per thread, measured in TPC-H queries answered
per hour. VectorWise is a new database system that has been designed from scratch
to better utilize modern hardware [80].

Figure 1.1: Performance per thread for transaction processing and deci-
sion support workloads. The thick gray line denotes peak performance per
thread among the three established database software vendors.

4

found in the existing database management systems. If fully utilizing exist-

ing hardware was a matter of tuning, this would be reflected in the perfor-

mance results of the standard TPC benchmarks which are highly regarded

by the industry. Such results, after all, are submitted by teams working

in close cooperation with the original software and hardware vendors, and

each submission is independently audited for adherence to the benchmark-

ing standards.

Unfortunately, an analysis of the published TPC results indicates that

reconfiguring existing database management systems has yielded diminish-

ing returns in the past. In fact, peak single-threaded performance among

the established database software vendors has hardly improved in the past

five years. This holds for both transactional and decision support work-

loads, which are shown in Figures 1.1(a) and 1.1(b), respectively. The

introduction of VectorWise [80] in 2011 (shown in the upper right corner

of Figure 1.1(b)) demonstrates that a database system that has been de-

signed to better utilize existing hardware can improve its single-threaded

performance by one order of magnitude.

This dissertation explores what performance gains a relational database

management system can achieve if it is designed for two key hardware

trends. The first trend is the abundance of on-chip and across-chip par-

allelism, as demonstrated by the rising number of cores per die and sockets

per computer. The second trend is the continuing drop of memory price per

gigabyte, which now makes it possible to store very large datasets entirely

in main memory. The next two sections briefly outline the opportunities

associated with each trend.

Eliminate serial bottlenecks

Processors today already have four to eight cores, and for the past few years

CPU manufacturers have been introducing two more cores roughly every

18 months. In addition, even low-end servers today are increasingly using a

5

two-socket configuration. This new level of hardware integration in a single

chip leads to architectural changes with deep impact.

Beginning about three decades ago, the data management community

thoroughly examined how a database management system can use vari-

ous forms of parallelism. These forms of parallelism include pure shared-

nothing, shared-memory, and shared disk architectures [74]. If the mod-

ern multi-core architectures resembled any of these architectural templates,

then we could simply adopt the methods that have already been designed.

To a large extent, this is the approach that database system designers have

taken towards dealing with multi-socket, multi-core machines. At a high

level, query processing today involves variations of techniques that were

developed for parallel shared-nothing architectures [26], but was adapted

for shared multi-processor (SMP) machines.

Most commercial database management systems simply treat a single

multi-core processor as many independent processors and break up the task

of a single operation, such as an join, into independent work units to allow

each core to work on each part independently. The drawback of this par-

allelization strategy is that it does not take advantage of the opportunities

for quick communication and data sharing via the shared cache hierarchy

that processors today commonly have.

Most open-source database management systems, on the other hand,

have largely ignored multi-core processing and generally rely on request

parallelism: they use each core to run a different query. Although this

strategy is trivial to implement, the disadvantage is that a single query will

only utilize a small fraction of the available resources of a modern system.

Memory is more than a cache

At the other side of the motherboard, a quiet change has been underfoot.

Most database system designs trace their origins back to the times when

the memory capacity of a computer system was a few megabytes, or about

6

1980 1985 1990 1995 2000 2005 2010 2015

Year

1¢

$1

$100

$10,000
D

R
A

M
 r

e
ta

il
p
ri

c
e
 p

e
r

m
e
g
a
b
y
te

Figure 1.2: Inflation-adjusted historical DRAM memory price per
megabyte, in 2013 US dollars. Data by John C. McCallum [60].

the size of the last level cache of a current CPU. One megabyte of memory,

however, has been getting 10× cheaper approximately every 5 years, during

the last three decades (see Figure 1.2). With one terabyte of memory costing

as little as $8,000, the working set of many databases today can cheaply

and efficiently be stored entirely in main memory.

Under the resource-limited environment of the past, database system

designers were forced to be very careful about how and when each record

would be brought in memory, processed and written back to non-volatile

storage. As a result, a central component of most database managements

systems is the buffer pool, which is a large software cache that temporarily

stores records while they are being manipulated. In addition, in order

to amortize the latency cost of accessing a single record from non-volatile

storage, multiple records are physically packed together in pages.

As a result, the execution path for many database management systems

7

has been optimized for structures that have a disk-friendly data layout. An

application that can store its entire dataset in memory today gets penalized

by the existing functionality. It has been shown that in a main-memory

environment, the buffer pool adds significant overhead [42], and the page

layout is far from optimal [3, 69].

To summarize, all server systems now come in multi-socket multi-core

configurations, providing abundant opportunities to exploit parallelism. In

addition, due to a steady decline in the price per gigabyte of memory,

main memory is now abundant and relatively cheap. It is not uncommon

for a single database server today to be able to concurrently execute in-

structions from hundreds of threads and store terabytes of data in main

memory. Commercial database management systems, however, have not

been designed for such hardware, and as a consequence they do not utilize

the available hardware to its full potential. They treat main memory as a

vast software-controlled cache and largely rely on multiple concurrent re-

quests to utilize all the processors of a system. This dissertation carefully

reconsiders the implications of these design choices for data processing.

1.2 Outline

This document is structured as follows. Chapter 2 studies how to optimize

the hash join operator for a main-memory setting. We discover that opti-

mizing for low cache miss rates in a single-socket multi-core CPU is only a

single dimension of a much more complex problem. In fact, we find that we

have reached a point where optimizing only for cache misses yields dimin-

ishing returns. We then consider optimal execution strategies for an entire

query in Chapter 3. We find that the physical organization of the inputs

plays a key role in deciding on the optimal parallel query execution plan.

In addition, we find that total memory consumption is an important opti-

mization metric, as it limits the number of queries a main memory database

8

system can admit at any given time.

The performance of query execution is largely determined by the per-

formance of the individual data retrieval operations to the underlying data

store. Chapter 4 looks at how to efficiently guarantee the atomicity, isola-

tion and durability of transactional operations on memory-resident data. In

that chapter, we design and implement three concurrency control algorithms

that have been optimized for main memory. One algorithm is a memory-

optimized version of single-version two-phase locking. We then compare

this scheme with two multi-version schemes, one optimistic that does vali-

dation and one pessimistic that requires synchronization. We find that the

single version scheme is extremely efficient under short update-heavy trans-

actions, but its performance deteriorates in the presence of long-running

read queries. Multi-versioning implementations prove to be more robust,

even when there is high contention. A unique characteristic of the pro-

posed design is that transactions running with either multi-version scheme

can co-exist with each other and thus the database system can dynami-

cally choose the optimal execution strategy. Finally, Chapter 5 outlines the

contributions of the dissertation and discusses future work.

9

Chapter 2

Redesigning the hash join

algorithm for single-socket,

multi-core CPUs

The focus of this chapter is on investigating efficient hash join algorithms

for modern multi-core processors in main memory environments. We dissect

each internal phase of a typical hash join algorithm and considers different

alternatives for implementing each phase, producing a family of hash join

algorithms. Then, we implement these main memory algorithms on two

radically different modern multi-processor systems, and carefully examine

the factors that impact the performance of each method.

Our analysis reveals some interesting results – a very simple hash join

algorithm is very competitive to the other more complex methods. This

simple join algorithm builds a shared hash table and does not partition

the input relations. Its simplicity implies that it requires fewer parameter

settings, thereby making it far easier for query optimizers and execution

engines to use it in practice. Furthermore, the performance of this simple

algorithm improves dramatically as the skew in the input data increases,

and it quickly starts to outperform all other algorithms. Based on our

10

results, we propose that database implementers consider adding this simple

join algorithm to their repertoire of main memory join algorithms, or adapt

their methods to mimic the strategy employed by this algorithm, especially

when joining inputs with skewed data distributions.

2.1 Introduction

Processors today already have four or more cores, and for the past few

years Intel has been introducing two more cores per processor roughly ev-

ery 15 months. At this rate, it is not hard to imagine running database

management systems (DBMSs) on processors with hundreds of cores in the

future. In addition, memory prices are continuing to drop. Consequently,

many databases now either fit entirely in main memory, or their working

set is main memory resident. As a result, many DBMSs are becoming CPU

bound.

In this evolving architectural landscape, DBMSs have the unique oppor-

tunity to leverage the inherent parallelism that is provided by the relational

data model. Data is exposed by declarative query languages to user appli-

cations and the DBMS is free to choose its execution strategy. Coupled

with the trend towards impending very large multi-cores, this implies that

DBMSs must carefully rethink how they can exploit the parallelism that is

provided by the modern multi-core processors, or DBMS performance will

stall.

A natural question to ask then is whether there is anything new here.

Beginning about three decades ago, at the inception of the field of paral-

lel DBMSs, the database community thoroughly examined how a DBMS

can use various forms of parallelism. These forms of parallelism include

pure shared-nothing, shared-memory, and shared disk architectures [74].

If the modern multi-core architectures resemble any of these architectural

templates, then we can simply adopt the methods that have already been

11

designed.

In fact, to a large extent this is the approach that DBMSs have haven

taken towards dealing with multi-core machines. Many commercial DBMSs

simply treat a multi-core processor as a symmetric multi-processor (SMP)

machine, leveraging previous work that was done by the DBMS vendors in

reaction to the increasing popularity of SMP machines decades ago. These

methods break up the task of a single operation, such as an equijoin, into

disjoint parts and allow each processor (in an SMP box) to work on each

part independently. At a high-level, these methods resemble variations of

query processing techniques that were developed for parallel shared-nothing

architectures [25], but adapted for SMP machines. In most commercial

DBMSs, this approach is reflected across the entire design process, ranging

from system internals (join processing, for example) to their pricing model,

which is frequently done by scaling the SMP pricing model. On the other

hand, open-source DBMSs have largely ignored multi-core processing and

generally dedicate a single thread/process to each query.

The design space for modern high performance main memory join al-

gorithms has two extremes. Reflecting on the previous work in this area,

one can observe that the database community has focused on optimizing

query processing methods to reduce the number of processor cache and TLB

misses. One extreme of this design space focuses on minimizing the number

of processor cache misses. The radix-based hash join algorithm [16] is an

example of a method in this design class. The other extreme is to focus

on minimizing processor synchronization costs. In this chapter we propose

a “no partitioning” hash join algorithm that does not partition the input

relations to embody an example of a method in this later design space.

A crucial question that we answer is what is the impact of these two ex-

treme design points in modern multi-core processors for main memory hash

join algorithms. A perhaps surprising answer is that for modern multi-core

architectures, in many cases the right approach is to focus on reducing the

12

computation and synchronization costs, as modern processors are very ef-

fective in hiding cache miss latencies via simultaneous multi-threading. For

example, in our experiments, the “no partitioning” hash join algorithm far

outperforms the radix join algorithm when there is skew in the data (which

is often the case in practice), even while it incurs many more processor cache

and TLB misses. Even with uniform data, the radix join algorithm only

outperforms the “no partitioning” algorithm on a modern Intel Xeon when

the parameters for the radix join algorithm are set at or near their opti-

mal setting. In contrast, the non-partitioned algorithm is “parameter-free”,

which is another important practical advantage.

This chapter makes three main contributions. First, we systematically

examine the design choices available for each internal phase of a canonical

main memory hash join algorithm – namely, the partition, build, and probe

phases – and enumerate a number of possible multi-core hash join algo-

rithms based on different choices made in each of these phases. We then

evaluate these join algorithms on two radically different architectures and

show how the architectural differences can affect performance. Unlike pre-

vious work that has often focused on just one architecture, our use of two

radically different architectures lets us gain deeper insights about hash join

processing on multi-core processors. To the best of our knowledge, this is

the first systematic exploration of multiple hash join techniques that spans

multi-core architectures.

Second, we show that an algorithm that does not do any partitioning,

but simply constructs a single shared hash table on the build relation often

outperforms more complex algorithms. This simple “no-partitioning” hash

join algorithm is robust to sub-optimal parameter choices by the optimizer,

and does not require any knowledge of the characteristics of the input to

work well. To the best of our knowledge, this simple hash join technique

differs from what is currently implemented in existing DBMSs for multi-

core hash join processing, and offers a tantalizingly simple, efficient, and

13

robust technique for implementing the hash join operation.

Finally, we show that the simple “no-partitioning” hash join algorithm

takes advantage of intrinsic hardware optimizations to handle skew. As

a result, this simple hash join technique often benefits from skew and its

relative performance increases as the skew increases! This property is a big

advancement over the state-of-the-art methods, as it is important to have

methods that can gracefully handle skew in practice [29].

The remainder of this chapter is organized as follows: The next two sec-

tion cover background information. The hash join variants are presented

in Section 2.4, and experimental results are described in Section 2.5. Sec-

tion 2.6 examines how sensitive our findings are with respect to the imple-

mentation of the radix-partitioned join. Finally, Section 2.7 contains our

concluding remarks.

2.2 Related work

There is a rich history of studying hash join performance for main memory

database systems, starting with the early work of DeWitt et al. [27]. A

decade later Shatdal et al. [72] studied cache-conscious algorithms for query

execution and discovered that the probe phase dominates the overall hash

join processing time. They also showed that hash join computation can be

sped up if both the build and probe relations are partitioned so as to fit in

the cache.

Ailamaki et al. [4] studied where the time is spent when executing four

different commercial databases systems by assigning fixed latency penalties

to architectural events. The study reveals two prominent areas that devel-

opers can focus on to improve performance of database code: they should

try to do data placement to avoid cache misses and optimize branches so

that branch mispredictions are minimized.

Manegold et al. [58] inspected the time breakdown for a hash join oper-

14

ation, and singled out cache and TLB misses as the two primary culprits for

suboptimal performance in main memory hash join processing. A follow-up

paper [59] presented a cost model on how to optimize the performance of

the radix join algorithm on a uniprocessor [16].

Ross [70] presented a more efficient way to improve the performance

of hash joins by using cuckoo hashing [66] and SIMD instructions. More

recently, Fan et al. [30] described one approach for making cuckoo hashing

safe for concurrent modifications. Garcia and Korth [33] have studied the

benefits of using simultaneous multi-threading for hash join processing.

Cieslewicz and Ross [23] studied how to efficiently partition a relation

with a multi-core processor. The main insight from this work is that when

the number of created partitions is small, then it is best to use independent

per-core output buffers to avoid lock contention. If more partitions are

desired, the working set for the independent output buffer algorithm exceeds

the cache size and performance degrades. The best option then becomes

to share output buffers among all threads and synchronize accesses either

through blocking or atomic operations. We leverage these two findings in

our work.

With the advent of multi-core CPUs, there was a renewed interest in

parallel join algorithms. Kim et al. [54] compared a parallel sort-merge

join with a parallel radix join. Their study relies on an analytical model

and raises interesting issues about the impact of SIMD register lengths on

the relative performance of the sort-merge join versus the hash-join in the

future. As the SIMD registers have doubled in size with the introduction

of the AVX extension, revisiting the use of SIMD for join processing is a

promising direction that complements our work. Balkesen et al. [9] extended

this work and demonstrated that hardware-conscious implementations of

the non-partitioned and radix partitioned join algorithms can greatly im-

prove performance, while Albutiu et al. [5] introduced a NUMA-aware sort-

merge algorithm that is designed for a modern multi-socket server

15

Finally, there has been prior work in handling skew during hash join

processing. The experiments with a high number of partitions that we will

present in Section 2.5.4 are an extension of an idea by DeWitt et al. [29]

for a main memory, multi-core environment.

2.3 The multi-core landscape

In the last few years alone, more than a dozen different multi-core CPU fam-

ilies have been introduced by CPU vendors. These new CPUs have ranged

from powerful dual-CPU systems on the same die to prototype systems of

hundreds of simple RISC cores.

This new level of integration has lead to architectural changes with

deep impact on algorithm design. Although the first multi-core CPUs had

dedicated caches for each core, we now see a shift towards more sharing

at the lower levels of the cache hierarchy and consequently the need for

access arbitration to shared caches within the chip. A shared cache means

better single-threaded performance, as one core can utilize the whole cache,

and more opportunities for sharing among cores. However, shared caches

also increase conflict cache misses due to false sharing, and may increase

capacity cache misses, if the cache sizes don’t increase proportionally to the

number of cores.

One idea that is employed to combat the diminishing returns of instruction-

level parallelism is simultaneous multi-threading (SMT). Multi-threading

attempts to find independent instructions across different threads of execu-

tion, instead of detecting independent instructions in the same thread. This

way, the CPU will schedule instructions from each thread and achieve bet-

ter overall utilization, increasing throughput at the expense of per-thread

latency.

We briefly consider two modern architectures that we subsequently use

for evaluation. At one end of the spectrum, the Intel Nehalem family is an

16

instance of Intel’s latest microarchitecture that offers high single-threaded

performance because of its out-of-order execution and on-demand frequency

scaling (TurboBoost). Multi-threaded performance is increased by using

simultaneous multi-threading (HyperThreading). At the other end of the

spectrum, the Sun UltraSPARC T2 has 8 simple cores that all share a

single cache. This CPU can execute instructions from up to 8 threads per

core, or a total of 64 threads for the entire chip, and extensively relies on

simultaneous multi-threading to achieve maximum throughput.

2.4 Different hash join variants

In this section, we consider the anatomy of a canonical hash join algo-

rithm, and carefully consider the design choices that are available in each

internal phase of a hash join algorithm. Then using these design choices,

we categorize various previous proposals for multi-core hash join process-

ing. In the following discussion we also present information about some of

the implementation details, as they often have a significant impact on the

performance of the technique that is described.

A hash join operator works on two input relations, R and S. We assume

that |R| < |S|. A typical hash join algorithm has three phases: partition,

build, and probe. The partition phase is optional and divides tuples into

distinct sets using a hash function on the join key attribute. The build

phase scans the relation R and creates an in-memory hash table on the

join key attribute. The probe phase scans the relation S, looks up the join

key of each tuple in the hash table, and in the case of a match creates the

output tuple(s).

Before we discuss the alternative techniques that are available in each

phase of the join algorithm, we briefly digress to discuss the impact of

the latch implementation on the join techniques. As a general comment,

we have found that the latch implementation has a crucial impact on the

17

overall join performance. In particular, when using the pthreads mutex

implementation, several instructions are required to acquire and release an

uncontended latch. If there are millions of buckets in a hash table, then

the hash collision rate is small, and one can optimize for the expected case:

latches being free. Furthermore, pthread mutexes have significant memory

footprint as each requires approximately 40 bytes. If each bucket stores

only a few <key, record-id> pairs, then the size of the latch array may be

greater than the size of the hash table itself. These characteristics make

mutexes a prohibitively expensive synchronization primitive for buckets in a

hash table. Hence, we implemented our own 1-byte latch for both the Intel

and the Sun architectures, using the atomic primitives xchgb and ldstub,

respectively. Protecting multiple hash buckets with a single latch to avoid

cache thrashing did not result in significant performance improvements even

when the number of partitions was high.

2.4.1 Partition phase

The partition phase is an optional step of a hash join algorithm, if the hash

table for the relation R fits in main memory. If one partitions both the R

and S relations such that each partition fits in the CPU cache, then the

cache misses that are otherwise incurred during the subsequent build and

probe phases are almost eliminated. The cost for partitioning both input

relations is incurring additional memory writes for each tuple. Work by

Shatdal et al. [72] has shown that the runtime cost of the additional memory

writes during partitioning phase is less than the cost of missing in the cache

– as a consequence partitioning improves overall performance. Recent work

by Cieslewicz and Ross [23] has explored partitioning performance in detail.

They introduce two algorithms that process the input once in a serial fashion

and do not require any kind of global knowledge about the characteristics of

the input. Another recent paper [54] describes a parallel implementation of

radix partitioning [16] which gives impressive performance improvements

18

on a modern multi-core system. This implementation requires that the

entire input is available upfront and will not produce any output until the

last input tuple has been seen. We experiment with all of these three

partitioning algorithms, and we briefly summarize each implementation in

Sections 2.4.1 and 2.4.1.

In our implementation, a partition is a linked list of output buffers. An

output buffer is fully described by four elements: an integer specifying the

size of the data block, a pointer to the start of the data block, a pointer to

the free space inside the data block and a pointer to the next output buffer

that is initially set to zero. If a buffer overflows, then we add an empty

output buffer at the start of the list, and we make its next pointer point to

the buffer that overflowed. Locating free space is a matter of checking the

first buffer in the list.

Let p denote the desired number of partitions and n denote the number

of threads that are processing the hash join operation. During the parti-

tioning phase, all threads start reading tuples from the relation R, via a

cursor. Each thread works on a large batch of tuples at a time, so as to

minimize synchronization overheads on the input scan cursor. Each thread

examines a tuple, then extracts the key k, and finally computes the par-

titioning hash function hp(k). Next, it then writes the tuple to partition

Rhp(k) using one of the algorithms we describe below. When the R cursor

runs out of tuples, the partitioning operation proceeds to process the tu-

ples from the S relation. Again, each tuple is examined, the join key k is

extracted and the tuple is written to the partition Shp(k). The partitioning

phase ends when all the S tuples have been partitioned.

Note that we classify the partitioning algorithms as “non-blocking” if

they produce results on-the-fly and scan the input once, in contrast to a

“blocking” algorithm that produces results after buffering the entire input

and scanning it more than once. We acknowledge that the join operator

overall is never truly non-blocking, as it will block during the build phase.

19

The distinction is that the non-blocking algorithms only block for the time

that is needed to scan and process the smaller input, and, as we will see in

Section 2.5.3, this a very small fraction of the overall join time.

Non-blocking algorithms

The first partitioning algorithm creates p shared partitions among all the

threads. The threads need to synchronize via a latch to make sure that the

writes to a shared partition are isolated from each other.

The second partitioning algorithm creates p ∗ n partitions in total and

each thread is assigned a private set of p partitions. Each thread then writes

to its local partitions without any synchronization overhead. When the

input relation is depleted, all threads synchronize at a barrier to consolidate

the p ∗ n partitions into p partitions.

The benefit of creating private partitions is that there is no synchro-

nization overhead on each access. The drawbacks, however, are (a) many

partitions are created, possibly so many that the working set of the algo-

rithm no longer fits in the data cache and the TLB; (b) at the end of the

partition phase some thread has to chain n private partitions together to

form a single partition, but this operation is quick and can be parallelized.

Blocking algorithm

Another partitioning technique is the parallel multi-pass radix partitioning

algorithm described by Kim et al. [54]. The algorithm begins by having

the entire input available in a contiguous block of memory. Each thread

is responsible for a specific memory region in that contiguous block. A

histogram with p ∗ n bins is allocated and the input is then scanned twice.

During the first scan, each thread scans all the tuples in the memory region

assigned to it, extracts the key k and then computes the exact histogram

of the hash values hp(k) for this region. Thread i ∈ [0, n − 1] stores the

number of tuples it encountered that will hash to partition j ∈ [0, p− 1] in

20

histogram bin j∗n+i. At the end of the scan, all the n threads compute the

prefix sum on the histogram in parallel. The prefix sum can now be used

to point to the beginning of each output partition for each thread in the

single shared output buffer. Finally, each thread performs a second scan

of its input region, and uses hp to determine the output partition. This

algorithm is recursively applied to each output partition for as many passes

as requested.

The benefit of radix partitioning is that it makes few cache and TLB

misses, as it bounds the number of output destinations in each pass. This

particular implementation has the benefit that, by scanning the input twice

for each pass, it computes exactly how much output space will be required

for each partition, and hence avoids the synchronization overhead that is as-

sociated with sharing an output buffer. Apart from the drawbacks that are

associated with any blocking algorithm when compared to a non-blocking

counterpart, this implementation also places a burden on the previous oper-

ator in a query tree to produce the compact and contiguous output format

that the radix partitioning requires as input. Efficiently producing a single

shared output buffer is a problem that has been studied before [24].

2.4.2 Build phase

The build phase proceeds as follows: If the partition phase was omitted,

then all the threads are assigned to work on the relation R. If parti-

tioning was done, then each thread i is assigned to work on partitions

Ri+0∗n, Ri+1∗n, Ri+2∗n, etc. For example, a machine with four cores has

n = 4, and thread 0 would work on partitions R0, R4, R8, ..., thread 1 on

R1, R5, R9, ..., etc.

Next, an empty hash table is constructed for each partition of the input

relation R. To reduce the number of cache misses that are incurred during

the next (probe) phase, each bucket of this hash table is sized so that it

fits on a few cache lines. Each thread scans every tuple t in its partition,

21

extracts the join key k, and then hashes this key using a hash function h(·).

Then, the tuple t is appended to the end of the hash bucket h(k), creating

a new hash bucket if necessary. If the partition phase was omitted, then all

the threads share the hash table, and writes to each hash bucket have to be

protected by a latch. The build phase is over when all the n threads have

processed all the assigned partitions.

2.4.3 Probe phase

The probe phase schedules work to the n threads in a manner similar to

the scheduling during the build phase, described above. Namely, if no

partitioning has been done, then all the threads are assigned to S, and they

synchronize before accessing the read cursor for S. Otherwise, the thread i

is assigned to partitions Si+0∗n, Si+1∗n, Si+2∗n, etc.

During the probe phase, each thread reads every tuple s from its assigned

partition and extracts the key k. It then checks if the key of each tuple r

stored in hash bucket h(k) matches k. This check is necessary to filter out

possible hash collisions. If the keys match, then the tuples r and s are

joined to form the output tuple. If the output is materialized, it is written

to an output buffer that is private to the thread.

Notice that there is parallelism even inside the probe phase: looking

up the key for each tuple r in a hash bucket and comparing it to k can

be parallelized with the construction of the output tuple, which primarily

involves shuffling bytes from tuples r and s. (See Section 2.5.10 for an

experiment that explores this further.)

2.4.4 Hash join variants

The algorithms presented above outline an interesting design space for hash

join algorithms. In this paper, we focus on the following four hash join

variations:

22

Intel Nehalem

CPU Xeon X5650 @ 2.67GHz

Cores 6

Contexts per core 2

Cache size, sharing 12MB L3, shared

Memory 3x 4GB DDR3

Sun UltraSPARC T2

CPU UltraSPARC T2 @ 1.2GHz

Cores 8

Contexts per core 8

Cache size, sharing 4MB L2, shared

Memory 8x 2GB DDR2

Table 2.1: Platform characteristics.

1. No partitioning join: An implementation where partitioning is

omitted. This implementation creates a shared hash table in the

build phase.

2. Shared partitioning join: The first non-blocking partitioning al-

gorithm of Section 2.4.1, where all the threads partition both input

sources into shared partitions. Synchronization through a latch is

necessary before writing to the shared partitions.

3. Independent partitioning join: The second non-blocking parti-

tioning algorithm of Section 2.4.1, where all the threads partition

both sources and create private partitions.

4. Radix partitioning join: An implementation where each input re-

lation is stored in a single, contiguous memory region. Then, each

thread participates in the radix partitioning, as described in Sec-

tion 2.4.1.

23

0

100

200

300

400

500

600

1

1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K

C
y
c
le

s
 p

e
r

o
u

tp
u

t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(a) Intel Nehalem

0

20

40

60

80

100

120

140

160

180

1

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 6
4

2
5

6
5

1
2

1
K

2
K 6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K

C
y
c
le

s
 p

e
r

o
u

tp
u

t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(b) Sun UltraSPARC T2

Figure 2.1: Cycles per output tuple for the uniform dataset.

24

2.5 Experimental evaluation

We have implemented the hash join algorithms described in Section 2.4.4

in a stand-alone C++ program. The program first loads data from the disk

into main memory. Data is organized in memory using traditional slotted

pages. The join algorithms are run after the data is loaded in memory.

Since the focus of this work in on memory-resident datasets, we do not

consider the time to load the data into main memory and only report join

completion times.

For our workload, we wanted to simulate common and expensive join op-

erations in decision support environments. The execution of a decision sup-

port query in a data warehouse typically involves multiple phases. First, one

or more dimension relations are reduced based on the selection constraints.

Then, these dimension relations are combined into an intermediate one,

which is then joined with a much larger fact relation. Finally, aggregate

statistics on the join output are computed and returned to the user. For

example, in the TPC-H decision support benchmark, this execution pattern

is encountered in at least 15 of the 22 queries.

We try to capture the essence of this operation by focusing on the most

expensive component, namely the join operation between the intermediate

relation R (the outcome of various operations on the dimension relations)

with a much larger fact relation S. To allow us to focus on the core join

performance, we initially do not consider the cost of materializing the out-

put in memory, adopting a similar method as previous work [27, 54]. In

later experiments (see Section 2.5.8), we consider the effect of materializing

the join result – in these cases, the join result is created in main memory

and not flushed to disk.

We describe the synthetic datasets that we used in the next section

(Section 2.5.1). In Section 2.5.2 we give details about the hardware that we

used for our experiments. We continue with a presentation of the results

in Sections 2.5.3 and 2.5.4. We analyze the results further in Sections 2.5.5

25

through 2.5.7. We present results investigating the effect of output materi-

alization, and the sensitivity to input sizes and selectivities in Sections 2.5.8

through 2.5.10.

2.5.1 Dataset

We experimented with three different datasets, which we denote as uniform,

low skew and high skew, respectively. We assume that the relation R con-

tains the primary key and the relation S contains a foreign key referencing

tuples in R. Furthermore, as R contains the primary key, we assume that R

can be accessed in sorted order on the primary key. In all the datasets, we

fix the cardinalities of R to 16M tuples and S to 256M tuples1. We picked

the ratio of R to S to be 1:16 to mimic common decision support settings.

We experiment with different ratios in Section 2.5.9.

In our experiments both keys and payloads are eight bytes each. Each

tuple is simply a <key, payload> pair, so tuples are 16 bytes long. Keys

can either be the values themselves, if the key is numeric, or an 8-byte hash

of the value in the case of strings. We chose to represent payloads as 8

bytes for two reasons: (a) Given that columnar storage is commonly used

in data warehouses, we want to simulate storing <key, value> or <key,

record-id> pairs in the hash table, and (b) make comparisons with existing

work (i.e. [54, 23]) easier. Exploring alternative ways of constructing hash

table entries is not a focus of this work, but has been explored before [70].

For the uniform dataset, we create tuples in the relation S such that each

tuple matches every key in the relation R with equal probability. For the

skewed datasets, we added skew to the distribution of the foreign keys in the

relation S. (Adding skew to the relation R would violate the primary key

constraint.) We created two skewed datasets, for two different s values of

the Zipf distribution: low skew with s = 1.05 and high skew with s = 1.25.

Intuitively, the most popular key appears in the low skew dataset 8% of

1Throughout the chapter, M=220 and K=210.

26

the time, and the ten most popular keys account for 24% of the keys. In

comparison, in the high skew dataset, the most popular key appears 22%

of the time, and the ten most popular keys appear 52% of the time.

In all the experiments, the hash buckets that are created during the

build phase have a fixed size: they always have 32 bytes of space for the

payload, and 8 bytes are reserved for the pointer that points to the next

hash bucket in case of overflow. These numbers were picked so that each

bucket fits in a single, last-level cache line for both the architectures. We

size the hash table appropriately so that no overflow occurs.

2.5.2 Platforms

We evaluated our methods on two different architectures: the Intel Nehalem

and the Sun UltraSPARC T2. We describe the characteristics of each ar-

chitecture in detail below, and we summarize key parameters in Table 2.1.

The Intel Nehalem microarchitecture is the successor of the Intel Core

microarchitecture. All Nehalem-based CPUs are superscalar processors and

exploit instruction-level parallelism by using out-of-order execution. The

Nehalem family supports multi-threading, and allows two contexts to exe-

cute per core.

For our experiments, we use the six-core Intel Xeon X5650 that was

released in Q1 of 2010. This CPU has a unified 12MB, 16-way associative

L3 cache with a line size of 64 bytes. This L3 cache is shared by all twelve

contexts executing on the six cores. Each core has a private 256KB, 8-way

associative L2 cache, with a line size of 64 bytes. Finally, private 32KB

instruction and data L1 caches connect to each core’s load/store units.

The Sun UltraSPARC T2 was introduced in 2007 and relies heavily

on multi-threading to achieve maximum throughput. An UltraSPARC T2

chip has eight cores and each core has hardware support for eight contexts.

UltraSPARC T2 does not feature out-of-order execution. Each core has a

single instruction fetch unit, a single floating point unit, a single memory

27

0

100

200

300

400

500

600

1

1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K

C
y
c
le

s
 p

e
r

o
u

tp
u

t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(a) Intel Nehalem

0

50

100

150

200

250

300

350

400

450

500

1

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 6
4

2
5

6
5

1
2

1
K

2
K 6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K

C
y
c
le

s
 p

e
r

o
u

tp
u

t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(b) Sun UltraSPARC T2

Figure 2.2: Cycles per output tuple for the low skew dataset.

28

unit and two arithmetic units. At every cycle, each core executes at most

two instructions, each taken from two different contexts. Each context

is scheduled in a round-robin fashion every cycle, unless the context has

initiated a long-latency operation, such as a memory load that caused a

cache miss, and has to wait for the outcome.

At the bottom of the cache hierarchy of the UltraSPARC T2 chip lies

a shared 4MB, 16-way associative write-back L2 cache, with a line size of

64 bytes. To maximize throughput, the shared cache is physically split

into eight banks. Therefore, up to eight cache requests can be handled

concurrently, provided that each request hits a different bank. Each core

connects to this shared cache through a non-blocking, pipelined crossbar.

Finally, each core has a 8KB, 4-way associative write-through L1 data cache

with 16 bytes per cache line that is shared by all the eight hardware contexts.

Overall, in the absence of arbitration delays, the L2 cache hit latency is 20

cycles.

2.5.3 Results

We start with the uniform dataset. In Figure 2.1, we plot the average

number of CPU cycles that it takes to produce one output tuple, without

actually writing the output, for a varying number of partitions. (Note that

to convert the CPU cycles to wall clock time, we simply divide the CPU

cycles by the corresponding clock rate shown in Table 2.1). The horizontal

axis shows the different join algorithms (bars “No”, “Shared”, “Indepen-

dent”), corresponding to the first three hash join variants described in Sec-

tion 2.4.4. For the radix join algorithm, we show the best result across any

number of passes (bars marked “Radix-best”). Notice that we assume that

the optimizer will always be correct and pick the optimal number of passes.

Overall, the build phase takes a very small fraction of the overall time,

regardless of the partitioning strategy that is being used, across all archi-

tectures (see Figure 2.1). The reason for this behavior is two-fold. First

29

and foremost, the smaller cardinality of the R relation translates into less

work during the build phase. (We experiment with different cardinality

ratios in Section 2.5.9.) Second, building a hash table is a really simple

operation: it merely involves copying the input data into the appropriate

hash bucket, which incurs a lot less computation than the other steps, such

as the output tuple reconstruction that must take place in the probe phase.

The performance of the join operation is therefore mostly determined by

the time spent partitioning the input relations and probing the hash table.

As can be observed in Figure 2.1(a) for the Intel Nehalem architecture,

the performance of the non-partitioned join algorithm is comparable to

the optimal performance achieved by the partition-based algorithms. The

shared partitioning algorithm performs best when sizing partitions so that

they fit in the last level cache. This figure reveals a problem with the

independent partitioning algorithm. For a high number of partitions, say

128K, each thread will create its own private buffer, for a total of 128K ∗

12 ≈ 1.5 million output buffers. This high number of temporary buffers

introduces two problems. First, it results in poor space utilization, as most

of these buffers are filled with very few tuples. Second, the working set of

the algorithm grows tremendously, and keeping track of 1.5 million cache

lines requires a cache whose capacity is orders of magnitude larger than the

12MB L3 cache. The radix partitioning algorithm is not affected by this

problem, because it operates in multiple passes and limits the number of

partition output buffers in each pass.

Next, we experimented with the Sun UltraSPARC T2 architecture. In

Figure 2.1(b) we see that doing no partitioning is at least 1.5X faster com-

pared to all the other algorithms. The limited memory on this machine

prevented us from running experiments with a high number of partitions

for the independent partitioning algorithm because of the significant mem-

ory overhead discussed in the previous paragraph. As this machine supports

nearly five times more hardware contexts than the Intel machine, the mem-

30

ory that is required for bookkeeping is five times higher as well.

To summarize our results with the uniform dataset, we see that on the

Intel architecture the performance of the no partitioning join algorithm is

comparable to the performance of all the other algorithms. For the Sun Ul-

traSPARC T2, we see that the no partitioning join algorithm outperforms

the other algorithms by at least 1.5X. Additionally, the no partitioning al-

gorithm is more robust, as the performance of the other algorithms degrades

if the query optimizer does not pick the optimal value for the number of

partitions.

2.5.4 Effect of skew

We now consider the case when the distribution of foreign keys in the rela-

tion S is skewed. We again plot the average time to produce each tuple of

the join (in machine cycles) in Figure 2.2 for the low skew dataset, and in

Figure 2.3 for the high skew dataset.

By comparing Figure 2.1 with Figure 2.2, we notice that, when using

the shared hash table (bar “No” in all graphs), performance actually im-

proves in the presence of skew! On the other hand, the performance of the

shared partitioning algorithm degrades rapidly with increasing skew, while

the performance of the independent partitioning and the radix partitioning

algorithms shows little change on the Intel Nehalem and degrades on the

Sun UltraSPARC T2. Moving to Figure 2.3, we see that the relative perfor-

mance of the non-partitioned join algorithm increases rapidly under higher

skew, compared to the other algorithms. The non-partitioned algorithm is

generally 2X faster than the other algorithms on the Intel Nehalem, and

more than 4X faster than the other algorithms on the Sun UltraSPARC T2.

To summarize these results, skew in the underlying join key values (data

skew) manifests itself as partition size skew when using partitioning. For

the shared partitioning algorithm, during the partition phase, skew causes

latch contention on the partition with the most popular key(s). For all

31

0

100

200

300

400

500

600

1

1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K

C
y
c
le

s
 p

e
r

o
u

tp
u

t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(a) Intel Nehalem

0

100

200

300

400

500

600

700

1

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 6
4

2
5

6
5

1
2

1
K

2
K 6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K

C
y
c
le

s
 p

e
r

o
u

tp
u

t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

(b) Sun UltraSPARC T2

Figure 2.3: Cycles per output tuple for the high skew dataset.

32

Intel Sun
Nehalem UltraSPARC T2

NO No / 1 No / 1
SN Indep. / 16 Indep. / 64
L2-S Shared / 2048 Shared / 2048
L2-R Radix / 2048 Radix / 2048

Table 2.2: Shorthand notation and corresponding partitioning strategy /
number of partitions.

partitioning-based algorithms, during the probe phase, skew translates into

a skewed work distribution per thread. Therefore, the overall join comple-

tion time is determined by the completion time of the partition with the

most popular key. (We explore this behavior further in Section 2.5.7.) On

the other hand, skew improves performance when sharing the hash table and

not doing partitioning for two reasons. First, the no partitioning approach

ensures an even work distribution per thread as all the threads are working

concurrently on the single partition. This greedy scheduling strategy proves

to be effective in hiding data skew. Second, performance increases because

the hardware handles skew a lot more efficiently, as skewed memory access

patterns cause significantly fewer cache misses.

2.5.5 Performance counters

Due to space constraints, we focus on specific partitioning configurations

from this section onward. We use “NO” to denote the no partitioning

strategy where the hash table is shared by all threads, and we use “SN” to

denote the case when we create as many partitions as hardware contexts

(join threads), except we round the number of partitions up to the next

power of two as is required for the radix partitioning algorithm. We use “L2”

to denote the case when we create partitions to fit in the last level cache,

appending “-S” when partitioning with shared output buffers, and “-R” for

33

TLB TLB
Cycles L3 Instruc- load store

miss -tions miss miss

partition 0 0 0 0 0
NO build 322 2 2,215 1 0

probe 15,829 862 54,762 557 0

partition 3,578 18 29,096 6 2
SN build 328 8 2,064 0 0

probe 21,717 866 54,761 505 0

partition 11,778 103 31,117 167 257
L2-S build 211 1 2,064 0 0

probe 6,144 35 54,762 1 0

partition 6,343 221 34,241 7 237
L2-R build 210 1 2,064 0 0

probe 6,152 36 54,761 1 0

Table 2.3: Hardware events for the uniform dataset (millions).

radix partitioning. We summarize this notation in Table 2.2. Notice that

the L2 numbers correspond to the best performing configuration settings in

the experiment with the uniform dataset (see Figure 2.1).

We now use the hardware performance counters to understand the char-

acteristics of these join algorithms. In the interest of space, we only present

our findings from a single architecture: the Intel Nehalem. We first show

the results from the uniform dataset in Table 2.3. Each row indicates one

particular partitioning algorithm and join phase, and each column shows a

different architectural event. First, notice the code path length. It takes, on

average, about 55 billion instructions to complete the probe phase and an

additional 50% to 65% of that for partitioning, depending on the algorithm

of choice. The NO algorithm pays a high cost in terms of the L3 cache

misses during the probe phase. The partitioning phase of the SN algorithm

is fast but fails to contain the memory reference patterns that arise during

the probe phase in the cache. The L2-S algorithm manages to minimize

these memory references, but incurs a high L3 and TLB miss ratio during

34

TLB TLB
Cycles L3 Instruc- load store

miss -tions miss miss

partition 0 0 0 0 0
NO build 323 3 2,215 1 0

probe 6,433 98 54,762 201 0

partition 3,577 17 29,096 6 1
SN build 329 8 2,064 0 0

probe 13,241 61 54,761 80 0

partition 36,631 79 34,941 67 106
L2-S build 210 5 2,064 0 0

probe 8,024 13 54,762 1 0

partition 5,344 178 34,241 5 72
L2-R build 209 4 2,064 0 0

probe 8,052 13 54,761 1 0

Table 2.4: Hardware events for the high skew dataset (millions).

the partition phase compared to the NO and SN algorithms. The L2-R

algorithm uses multiple passes to partition the input and carefully controls

the L3 and TLB misses during these phases. Once the cache-sized partitions

have been created, we see that both the L2-S and L2-R algorithms avoid

incurring many L3 and TLB misses during the probe phase. In general, we

see fewer cache and TLB misses across all algorithms when adding skew (in

Table 2.4).

Unfortunately, interpreting performance counters is much more chal-

lenging with modern multi-core processors and will likely get worse. Pro-

cessors have become a lot more complex over the last ten years, yet the

events that counters capture have hardly changed. This trend causes a

growing gap between the high-level algorithmic insights the user expects

and the specific causes that trigger some processor state that the perfor-

mance counters can capture. In a uniprocessor, for example, a cache miss

is an indication that the working set exceeds the cache’s capacity. The

penalty is bringing the data from memory, an operation the costs hundreds

35

of cycles. However, in a multi-core processor, a memory load might miss in

the cache because the operation touches memory that some other core has

just modified. The penalty in this case is looking in some other cache for

the data. Although a neighboring cache lookup can be ten or a hundred

times faster than bringing the data from memory, both scenarios will simply

increment the cache miss counter and not record the cause of this event.

To illustrate this point, let’s turn our attention to a case in Table 2.3

where the performance counter results can be misleading: The probe phase

of the SN algorithm has slightly fewer L3 and TLB misses than the probe

phase of the NO algorithm and equal path length, so the probe phase of the

SN algorithm should be comparable or faster than probe phase of the NO

algorithm. However, the probe phase of the NO algorithm is almost 25%

faster! Another issue is latch contention, which causes neither L3 cache

misses nor TLB misses, and therefore is not reported in the performance

counters. For example, when comparing the uniform and high skew numbers

for the L2-S algorithm, the number of the L3 cache misses during the high

skew experiment is 30% lower than the number of the cache misses observed

during the uniform experiment. However, partitioning performance worsens

by more than 3X when creating shared partitions under high skew!

The performance counters don’t provide clean insights into why the non-

partitioned algorithm exhibits similar or better performance than the other

cache-efficient algorithms across all datasets. Although a cycle breakdown

is still feasible at a macroscopic level where the assumption of no contention

holds (for example as in Ailamaki et al. [4]), this experiment reveals that

blindly assigning fixed cycle penalties to architectural events can lead to

misleading conclusions.

2.5.6 Speedup from SMT

Modern processors improve the overall efficiency with hardware multithread-

ing. Simultaneous multi-threading (SMT) permits multiple independent

36

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
p
e

e
d

u
p

Number of threads

NO

SN

L2-S

L2-R

Figure 2.4: Speedup over single threaded execution, uniform dataset.

threads of execution to better utilize the resources provided by modern

processor architectures. We now evaluate the impact of SMT on the hash

join algorithms.

We first show a speedup experiment for the Intel Nehalem on the uni-

form dataset in Figure 2.4. We start by dedicating each thread to a core,

and once we exceed the number of available physical cores (six for our Intel

Nehalem), we then start assigning threads in a round-robin fashion to the

available hardware contexts. We observe that the algorithms behave very

differently when some cores are idle (fewer than six threads) versus in the

SMT region (more than six threads). With fewer than six threads all the

algorithms scale linearly, and the NO algorithm has optimal speedup. With

more than six threads, the NO algorithm continues to scale, becoming al-

most 11X faster than the single-threaded version when using all available

37

Uniform
6 threads 12 threads Improvement

NO 28.23 16.15 1.75X
SN 34.04 25.62 1.33X
L2-S 19.27 18.13 1.06X
L2-R 14.46 12.71 1.14X

High skew
6 threads 12 threads Improvement

NO 9.34 6.76 1.38X
SN 19.50 17.15 1.14X
L2-S 38.37 44.87 0.86X
L2-R 15.04 13.61 1.11X

Table 2.5: Simultaneous multi-threading experiment on the Intel Nehalem,
showing billions of cycles to join completion and relative improvement.

contexts. The partitioning-based algorithms SN, L2-S and L2-R, however,

do not exhibit this behavior. The speedup curve for these three algorithms

in the SMT region either flattens completely (SN algorithm), or increases

at a reduced rate (L2-R algorithm) than the non-SMT region. In fact, per-

formance drops for all partitioning algorithms for seven threads because of

load imbalance: a single core has to do the work for two threads. (This

imbalance can be ameliorated through load balancing, a technique that we

explore in Section 2.5.7.)

We summarize the benefit of SMT in Table 2.5 for the Intel architec-

ture, and in Table 2.6 for the Sun architecture. For the Intel Nehalem and

the uniform dataset, the NO algorithm benefits significantly from SMT,

becoming 1.75X faster. This algorithm is not optimized for cache perfor-

mance, and as seen in Section 2.5.5, causes many cache misses. As a result,

it provides more opportunities for SMT to efficiently overlap the memory

accesses. On the other hand, the other three algorithms are optimized for

cache performance to different degrees. Their computation is a large frac-

38

Uniform
8 threads 64 threads Improvement

NO 37.30 12.64 2.95X
SN 55.70 22.25 2.50X
L2-S 51.62 23.86 2.16X
L2-R 46.62 18.88 2.47X

High skew
8 threads 64 threads Improvement

NO 23.92 11.67 2.05X
SN 70.52 49.54 1.42X
L2-S 73.91 221.01 0.33X
L2-R 66.01 43.16 1.53X

Table 2.6: Simultaneous multi-threading experiment on the Sun Ultra-
SPARC T2, showing billions of cycles to join completion and relative im-
provement.

tion of the total execution time, therefore they do not benefit significantly

from using SMT. In addition, we notice that the NO algorithm is around 2X

slower than the L2-R algorithm without SMT, but its performance increases

to almost match the L2-R algorithm performance with SMT.

For the Sun UltraSPARC T2, the NO algorithm also benefits the most

from SMT. In this architecture the code path length (i.e. instructions exe-

cuted) has a direct impact on the join completion time, and therefore the

NO algorithm performs best both with and without SMT. As the Sun ma-

chine cannot exploit instruction parallelism at all, we see increased benefits

from SMT compared to the Intel architecture.

When comparing the high skew dataset with the uniform dataset across

both architectures, we see that the improvement of SMT is reduced. The

skewed key distribution incurs fewer cache misses, therefore SMT loses op-

portunities to hide processor pipeline stalls.

39

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

C
y
c
le

s
 (

b
ill

io
n
s
)

Thread ID

work wait

(a) High skew dataset

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

C
y
c
le

s
 (

b
ill

io
n
s
)

Thread ID

work wait

(b) High skew dataset with work stealing

Figure 2.5: Time breakdown of the radix join.

40

2.5.7 Synchronization

Synchronization is used in multithreaded programs to guarantee the con-

sistency of shared data structures. In our join implementations, we use

barrier synchronization when all the threads wait for tasks to be completed

before they can proceed to the next task. (For example, at the end of each

pass of the radix partition phase, each thread has to wait until all other

threads complete before proceeding.) In this section, we study the effect of

barrier synchronization on the performance of the hash join algorithm. In

the interest of space, we only present results for the Intel Nehalem machine.

Since the radix partitioning algorithm wins over the other partitioning al-

gorithms across all datasets, our discussion only focuses on results for the

non-partitioned algorithm (NO) and the radix partitioning algorithm (L2-

R).

Synchronization has little impact on the non-partitioned (NO) algorithm

for both the uniform and the high skew datasets, regardless of the number

of threads that are running. The reason for this behavior is the simplicity of

the NO algorithm. First, there is no partition phase at all, and each thread

can proceed independently in the probe phase. Therefore synchronization

is only necessary during the build phase, a phase that takes less than 2%

of the total time (see Figure 2.1). Second, by dispensing with partitioning,

this algorithm ensures an even distribution of work across the threads, as

all the threads are working concurrently on the single shared hash table.

We now turn our attention to the radix partitioning algorithm, and

break down the time spent by each thread. Unlike the non-partitioned al-

gorithm, the radix partitioning algorithm is significantly impacted by syn-

chronization on both the uniform and the high skew datasets. Figure 2.5(a)

shows the time breakdown for the L2-R algorithm when running 12 threads

on the Intel Nehalem machine with the high skew dataset. Each histogram

in this figure represents the execution flow of a thread. The vertical axis

can be viewed as a time axis (in machine cycles). White rectangles in these

41

histograms represent tasks, the position of each rectangle indicates the be-

ginning time of the task, and the height represents the completion time of

this task for each thread. The gray rectangles represent the waiting time

that is incurred by a thread that completes its task but needs to synchro-

nize with the other threads before continuing. In the radix join algorithm,

we can see five expensive operations that are synchronized through barri-

ers: (1) computing the thread-private histogram, (2) computing the global

histogram, (3) doing radix partitioning, (4) building a hash table for each

partition of the relation R, and (5) probing each hash table with a partition

from the relation S. The synchronization cost of the radix partitioning al-

gorithm accounts for nearly half of the total join completion time for some

threads.

The synchronization cost is so high under skew primarily because it is

hard to statically divide work items into equally-sized subtasks. As a result,

faster threads have to wait for slower threads. For example, if threads are

statically assigned to work on partitions in the probe phase, the distribution

of the work assigned to the threads will invariably also be skewed. Thus,

the thread processing the partition with the most popular key becomes a

bottleneck and the overall completion time is determined by the completion

time of the partition with the most popular keys. In Figure 2.5(a), this is

thread 3.

Load balancing

If static work allocation is the problem, then how would the radix join algo-

rithm perform under a dynamic work allocation policy and highly skewed

input? To answer this question, we tweaked the join algorithm to allow the

faster threads that have completed their probe phase to steal work from

other slower threads. In our implementation, the unit of work is a single

partition. In doing so, we slightly increase the synchronization cost because

work queues need to now be protected with latches, but we balance the load

42

Machine NO SN L2-S L2-R
Intel Nehalem 23% 4% 7% 10%

Sun UltraSPARC T2 29% 21% 20% 23%

Table 2.7: Overhead of materialization with respect to total cycles without
materialization on the uniform dataset.

better.

In Figure 2.5(b) we plot the breakdown of the radix partitioning al-

gorithm (L2-R) using this work stealing policy when running on the Intel

Nehalem machine with the high skew dataset. Although the work is now

balanced almost perfectly for the smaller partitions, the partitions with the

most popular keys are still a bottleneck. In the high skew dataset, the

most popular key appears 22% of the time, and thread 3 in this case has

been assigned only a single partition which happened to correspond to the

most popular key. In comparison, for this particular experiment, the NO

algorithm can complete the join in under 7 billion cycles (Table 2.4), and

hence is 1.9X faster. An interesting area for future work is load balancing

techniques that permit work stealing at a finer granularity than an entire

partition with a reasonable synchronization cost.

To summarize, under skew, a load balancing technique improves the per-

formance of the probe phase but does not address the inherent inefficiency

of all the partitioning-based algorithms. In essence, there is a coordination

cost to be paid for load balancing, as thread synchronization is necessary.

Skew in this case causes contention, stressing the cache coherence proto-

col and increasing memory traffic. On the other hand, the no partitioning

algorithm does skewed memory loads of read-only data, which is handled

very efficiently by modern CPUs through caching.

43

Scale 0.5 Scale 1 Scale 2
NO 7.65 (0.47X) 16.15 (1.00X) 62.27 (3.86X)
SN 11.76 (0.46X) 25.62 (1.00X) 98.82 (3.86X)
L2-S 8.47 (0.47X) 18.13 (1.00X) 68.48 (3.78X)
L2-R 5.82 (0.46X) 12.71 (1.00X) DNF

Table 2.8: Join sensitivity with varying input cardinalities for the uniform
dataset on Intel Nehalem. The table shows the cycles for computing the
join (in billions) and the relative difference to scale 1.

2.5.8 Effect of output materialization

Early work in main memory join processing [27] did not take into account

the cost of materialization. This decision was justified by pointing out that

materialization comes at a fixed price for all algorithms and, therefore, a

join algorithm will be faster regardless of the output being materialized or

discarded. Recent work by Cieslewicz et al. [22] highlighted the trade-offs

involved when materializing the output.

In Table 2.7 we report the increase in the total join completion time

when we materialize the output in memory for the uniform dataset and the

partitioning strategies described in Table 2.2. If the join operator is part

of a complex query plan, it is unlikely that the entire join output will ever

need to be written in one big memory block, but, even in this extreme case,

we see that no algorithm is being significantly impacted by materialization.

2.5.9 Cardinality experiments

We now explore how sensitive our findings are to variations in the cardinal-

ities of the two input relations. Table 2.8 shows the results when running

the join algorithms on the Intel Nehalem machine. The numbers obtained

from the uniform dataset (described in detail in Section 2.5.1) are shown in

the middle column. We first created one uniform dataset where both rela-

44

0

100

200

300

400

500

600

700

800

1

1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K 1
6

6
4

2
5

6
5

1
2

1
K

2
K

4
K

8
K

3
2

K
1

2
8

K

C
y
c
le

s
 p

e
r

o
u

tp
u

t
tu

p
le

Number of partitions

Radix-bestIndependentSharedNo

partition build probe

Figure 2.6: Performance on Intel Nehalem with uniform dataset and
|R|=|S|.

tions are half the size (scale 0.5). This means the relation R has 8M tuples

and the relation S has 128M tuples. We also created a uniform dataset

where both relations are twice the size (scale 2), i.e. the relation R has 32M

tuples and the relation S has 512M tuples. The scale 2 dataset occupies

9GB out of the 12GB of memory our system has (Table 2.1) and leaves

little working memory, but the serial access pattern allows performance to

degrade gracefully for all algorithms but the L2-R algorithm. The main

memory optimizations of the L2-R algorithm cause many random accesses

which hurt performance. We therefore mark the L2-R algorithm as not

finished (DNF).

We now examine the impact of the relative size of the relations R and

S. We fixed the cardinality of the relation S to be 16M tuples, making

45

|R| = |S|, and we plot the cycles per output tuple for the uniform dataset

when running on the Intel Nehalem in Figure 2.6. First, the partitioning

time increases proportionally to |R|+ |S|. Second, the build phase becomes

significant, taking at least 25% of the total join completion time. The probe

phase, however, is at most 30% slower, and less affected by the cardinality

of the relation R. Overall, all the algorithms are slower when |R| = |S|

because they have to process more data, but the no partitioning algorithm

is slightly favored because it avoids partitioning both input relations.

The results show that no join algorithm is particularly sensitive to our

selection of input relation cardinalities, therefore our findings are expected

to hold across a broader spectrum of cardinalities. The outcome of the

experiments for the Sun UltraSPARC T2 is similar, and is omitted.

2.5.10 Selectivity experiment

We now turn our attention to how join selectivity affects performance. As

all our original datasets are examples of joins between primary and foreign

keys, all the experiments that have been presented so far have a selectivity

of 100%. For this experiment we created two different S relations that have

the same cardinality but only 50% and 12.5% of the tuples join with a tuple

in the relation R. The key distribution is uniform.

Results for the Intel Nehalem are shown Figure 2.7(a). Decreasing join

selectivity has a marginal benefit on the probe phase, but the other two

phases are unaffected. The outcome of the same experiment on Sun Ultra-

SPARC T2 is shown in Figure 2.7(b). In this architecture, the benefit of a

small join selectivity on the probe phase is significant.

Inspecting the performance counters in this experiment revealed addi-

tional insights. Across all the architectures, the code path length (i.e. in-

structions executed) increases as join selectivity increases. The Intel Ne-

halem is practically insensitive to different join selectivities, because its

out-of-order execution manages to overlap the data transfer with the byte

46

0

10

20

30

40

50

60

70

80

90

100

N
O

S
N

L
2

-S

L
2

-R N
O

S
N

L
2

-S

L
2

-R N
O

S
N

L
2

-S

L
2

-R

C
y
c
le

s
 p

e
r

o
u

tp
u

t
tu

p
le

Join selectivity

100%50%12%

partition build probe

(a) Intel Nehalem

0

10

20

30

40

50

60

70

80

90

100

N
O

S
N

L
2

-S

L
2

-R N
O

S
N

L
2

-S

L
2

-R N
O

S
N

L
2

-S

L
2

-R

C
y
c
le

s
 p

e
r

o
u

tp
u

t
tu

p
le

Join selectivity

100%50%12%

partition build probe

(b) Sun UltraSPARC T2

Figure 2.7: Increasing join selectivity impacts the critical path for the Sun
UltraSPARC T2, while the out-of-order execution on Intel Nehalem overlaps
computation with data transfer.

47

shuffling that is required to assemble the output tuple. On the other hand,

for the Sun UltraSPARC T2 machine, there is a strong linear correlation

between the code path length and the cycles that are required for the probe

phase to complete. The in-order Sun UltraSPARC T2 cannot automati-

cally extract the instruction-level parallelism of the probe phase, unless the

programmer explicitly expresses it by using multiple threads.

2.5.11 Implications

These results imply that DBMSs must reconsider their join algorithms for

current and future multi-core processors. First, modern processors are very

effective in hiding cache miss latencies through multi-threading (SMT), as

it is shown in Tables 2.5 and 2.6. Second, optimizing for cache performance

requires partitioning, and this has additional computation and synchro-

nization overheads, and necessitates elaborate load balancing techniques to

deal with skew. These costs of partitioning on a modern multi-core machine

can be higher than the benefit of an increased cache hit rate, especially on

skewed datasets (as shown in Figures 2.2 and 2.3.) To fully leverage the

current and future CPUs, high performance main memory designs have to

achieve good cache and TLB performance, while fully exploiting SMT, and

minimizing synchronization costs.

2.6 Experimenting with a different

implementation

Unfortunately, because of three differences in the experimental setup, a

direct comparison between our results and [54] is impossible. First, the

tuples we use are 16 bytes wide, but only 8 bytes in [54]. Second, most

of the experiments show results where the size ratio between two the join

inputs is 1/16, to mimic a primary key–foreign key join in a decision support

48

environment where there is a small dimension table and larger fact table.

In [54], the two inputs have equal size. Finally, although both studies use

CPUs based on the Intel Nehalem microarchitecture, the hardware is not

the same. Among other differences, the available memory bandwidth per

core is the most striking: In the Xeon X5650 CPU used in our experiments,

twelve hardware threads share the 6.4GT/s memory bus. In the i7-965 that

is used in [54], only eight hardware threads share the memory bus of the

same bandwidth. Although the exact effect of reduced memory bandwidth

per core on parallel radix hash join performance is unknown, Intel reports

that the i7-965 has 1.2X the effective bandwidth per core than the Xeon

X5650 [48].

Although the implementation used in [54] was unavailable, the co-authors

of the Kim et al. [54] paper at Oracle generously provided us with a dif-

ferent implementation of the parallel main-memory radix-partitioned join.

We compared the two hash join implementations, and this report summa-

rizes our findings. In Section 2.6.1, we compare the efficiency of the radix

partitioning phase of the two implementations. In Section 2.6.2, we show

where the time is spent in our radix-partitioned hash join implementation.

2.6.1 Radix partitioning efficiency

In this section we focus on the efficiency of the partitioning phase. We

use the term “Wisconsin–original” to refer to the implementation described

here, and the term “Oracle” to refer to the Oracle implementation.

By inspecting the Wisconsin and Oracle implementations, we noticed

that the Oracle implementation differs in the handling of index metadata:

it assumes that that the tuple is eight bytes, the key is four bytes, and that

the key is the first element stored in the tuple (that is, the key is stored at

offset 0 from the beginning of the tuple). Furthermore, hashing is always a

binary AND on the four byte key, followed by a shift. In comparison, the

Wisconsin implementation has separate classes to store index metadata,

49

Partitions

Implementation 64 256 1K 4K 16K 64K

Wisconsin–original 21.10 13.15 13.19 14.10 16.83 27.10
Wisconsin–hardcoded 7.59 6.80 7.77 9.86 13.29 25.49

Oracle 5.32 6.49 9.91 10.68 12.19 18.24

Table 2.9: Average time taken to partition a 256M tuple input table, in
machine cycles per tuple, where each tuple is 8 bytes wide. We have con-
figured all implementations to partition in one pass, and we highlight the
column corresponding to the “radix-best” configuration.

and the partitioning code calls appropriate class methods for operations

like attribute retrieval, value hashing and tuple copying. To facilitate di-

rect comparisons, we modified the Wisconsin implementation to perform

key retrieval, key hashing and tuple copying inline, using the same values

appearing in the Oracle implementation. We use “Wisconsin–hardcoded”

to refer to this modification.

For this experiment, we partition a single input table that contains 228

(256M) tuples. Mimicking the experimental setup of [54], each tuple has a

four byte key, followed by four bytes of data, for a total of eight bytes per

tuple. We report averages over ten runs, where each run partitions random

input that is read directly from /dev/urandom. We have configured all

implementations to always partition in one pass after we experimentally

verified that one-pass partitioning is the optimal setting for this range of

output partitions, for all implementations.

Table 2.9 shows the average time to partition, in machine cycles per

tuple, for each implementation, for a different number of partitions. We

highlight the column that corresponds to the “radix-best” setting we used

in Section 2.5 for a dataset of the same size.

From this experiment, we conclude that the Oracle and Wisconsin–

hardcoded implementations are equally optimized, as they have comparable

50

performance between 256 and 16,384 partitions, after we account for exper-

imental noise. Furthermore, we conclude that the partitioning performance

numbers in Section 2.5 could be improved by an average of 4-5 cycles per

tuple, if we hardcoded the data access operations for the particular dataset.

2.6.2 Overall join efficiency

In this section we turn our attention to the overall join efficiency of our

implementation, when compared with the previously published numbers

[54].

As the Intel implementation is unavailable, one question is how would

the performance numbers published in 2009 look on newer hardware. (The

CPU we use for evaluation in Section 2.5 became publicly available in 2010.)

The main problem is that both CPUs have the same memory bus, but the

Xeon CPU has 1.5X more cores. If the entire radix hash join algorithm was

memory bound, the bottleneck would be on the memory bus, and we would

expect to see no performance improvement from adding more cores. On the

other hand, if the entire radix hash join algorithm was computation bound

(and 1.5X more cores didn’t saturate the memory bus), we would expect

to see up to 1.5X improvement from adding 1.5X cores. Unfortunately, the

radix hash join exhibits both behaviors, as some steps are memory bound

and some others are computation bound [54].

Although predicting actual performance is impossible, we will now at-

tempt estimate what the upper bound on performance would be. Let’s

disregard the different memory bandwidth available per core, and let’s op-

timistically assume that performance scales linearly with the number of

cores. We therefore assume that the (unavailable) Intel implementation

would be 1.5X faster when upgrading from the 4-core i7 used in [54] to

the 6-core Xeon used in Section 2.5. Looking at the figures of [54] closely,

we see that for 8 byte tuples where the input tables have equal size the

join finishes at 30-35 cycles per tuple. As the i7 CPU has four cores, this

51

becomes 120-140 cycles per tuple per core. We therefore assume that, if

the Intel implementation ran on the Xeon X5650 CPU, the upper bound

on performance would be 130 cycles per tuple per core.

We run an experiment where the ratio between the two join inputs is

1:1. Each input table has 224 (16M) tuples, and all tuples are 8-byte wide.

Results are shown in Table 2.10, expressed in cycles per tuple per core. The

left column corresponds to the experiment shown in Fig. 2.6, if ran on a

dataset that has 8-byte tuples. The right column discounts the overhead

of staging the join input data contiguously in memory (a prerequisite of

the radix partitioning implementation that no storage engine that we know

of is capable of producing), as well as the overhead of supporting generic,

user-defined data operations like typed value comparisons, user-defined key

hashing, and arbitrary projection expressions. We believe that the numbers

published in [54] do not account for these overheads.

As the results show, hardcoding the data operations can save more than

100 cycles per tuple per core. Similar optimizations could be applied to

the hash table code, however we have not endeavored to tune it further, as

this is an orthogonal optimization that will improve performance across all

algorithms we compare against. Finally, we make no effort to exploit data-

level parallelism through SIMD optimizations — these two factors could

close the 75 cycle per tuple per core performance gap between the two

implementations even further.

In conclusion, there exist implementation differences between the two

code bases, but at the level of the common core components, the differ-

ences are small. The code that we described in Section 2.4 is part of a

much larger data processing engine, so it is by necessity more generic (for

example, we can handle different schemas, and we support data types other

than integers), although it is by no means complete (for example, we are

missing code to evaluate arbitrarily complex expressions at runtime). This

report demonstrates that optimizations to selected portions of a hash join

52

C
y
cl
es

p
er

tu
p
le

p
er

co
re

A
s
m
ea
su
re
d

H
ar
d
co
d
in
g

A
s
re
p
or
te
d

P
h
as
e

A
ct
io
n

in
S
ec
ti
on

2.
5

d
at
a
op

er
at
io
n
s

in
[5
4]

P
ar
ti
ti
on

D
at
a
st
ag
in
g

32
.7
2

—
90
–9
5

C
or
e
p
ar
ti
ti
on

in
g

13
1.
75

97
.4
3

B
u
il
d

P
ro
je
ct

on
b
u
il
d
tu
p
le

3.
87

—

35
–4
0

H
as
h
ta
b
le

in
se
rt

64
.2
6

64
.2
6

P
ro
b
e

H
as
h
ta
b
le

cu
rs
or

re
ad

47
.1
0

47
.1
0

A
ss
em

b
le

ou
tp
u
t
tu
p
le

58
.3
5

—

T
ot
al

33
8.
05

20
8.
79

∼
13
0

T
ab

le
2.
10
:
C
y
cl
e
b
re
ak

d
ow

n
d
u
ri
n
g
ra
d
ix

p
ar
ti
ti
on

ed
h
as
h
jo
in
.

53

algorithm, and a performance comparison based on these portions, can only

shed light on a part of the picture. Per Amdahl’s law, the results should

be put in the context of the entire machinery that is needed in a real data

processing engine to gauge the overall impact.

2.7 Concluding remarks

The rapidly evolving multi-core landscape requires that DBMSs carefully

consider the interactions between query processing algorithms and the un-

derlying hardware. In this chapter we examine these interactions when

executing a hash join operation in a main memory DBMS. We implement

a family of main memory hash join algorithms that vary in the way that

they implement the partition, build, and probe phases of a canonical hash

join algorithm.

We also evaluate our algorithms on two different multi-core processor

architectures. Our results show that a simple hash join technique that does

not do any partitioning of the input relations often outperforms the other

more complex partitioning-based join alternatives. In addition, the relative

performance of this simple hash join technique rapidly improves with in-

creasing skew, and it outperforms every other algorithm in the presence of

even small amounts of skew. Performance increases with data skew when

the hash table is shared because skewed memory access patterns cause sig-

nificantly fewer cache misses.

A promising area for future work is to investigate ways to lessen the im-

pact of TLB misses on performance for workloads with large memory foot-

prints. Most processors available at the time the experimental analysis was

performed featured “large” page support where the size of each individual

page was a few megabytes, and the total TLB-addressable virtual space size

was still a tiny fraction of the hunderds of gigabytes of main memory found

in a typical server system. Newer processors allow a dramatically bigger

54

fraction of memory to be directly translated by the TLB. For example, In-

tel has announced that the Xeon Sandy Bridge-EP generation of processors

will feature four dedicated one gigabyte TLB entries, allowing for at least

four GBs of memory to be directly translated by the TLB. Looking further

ahead, techniques such as direct segment addressing have been proposed

[11], which permit accesses to certain application-defined memory regions

to completely bypass the TLB. Adopting such architectural advances will

improve the performace of “big memory” workloads by significantly reduc-

ing the resources used to translate virtual to physical memory addresses.

To summarize, minimizing cache misses via partitioning requires addi-

tional computation, synchronization and load balancing to cope with skew.

As our experiments show, these costs can be higher than the benefit of an

increased cache hit rate. It is suprpising that the naive non-partitioned

hash join that is oblivious to the cache size and requires no synchroniza-

tion or explicit load balancing is often tied with or outperforms traditional

highly-optimized cache-efficient hash join methods.

55

Chapter 3

Equi-join algorithms for

memory-resident data

There is renewed interest in ad hoc equijoin algorithms for main memory

databases. As with traditional disk-based databases, recent studies have

focused on hash-based versus sort-based methods, and some appear to pro-

nounce the death of hash-based join algorithms for main memory databases.

This chapter systematically evaluates hash-based and sort-based methods

in a multi-socket, multi-core main memory environment. Our results find

that, far from being passé, the hash join performs very well in main mem-

ory environments, though sort-based algorithms also have a role to play.

Main memory DBMSs that aim for high efficiency should implement both

methods.

Our work also carefully considers the memory footprint that is needed to

run each join method, a practical concern when building actual main mem-

ory DBMSs. Finally, we also consider the impact of various input physical

properties and the physical properties of the output of each join method,

as these are important aspects to consider when using join algorithms as

building blocks in complex query processing pipelines.

56

3.1 Introduction

Main memory database management systems (DBMSs) are becoming a cru-

cial component of the big data ecosystem. Their rise is driven largely by

analytical applications that demand real-time results. To provide that level

of performance, the DBMS can’t afford to access data from a traditional

I/O subsystem at query execution time. In parallel, DRAM prices have

continued to drop rapidly, while memory densities have continued to in-

crease rapidly following the beat set by Moore’s Law. The end result is

that it is now possible, and economical, to build systems that keep the

entire database resident in main memory. In fact, many database vendors

now offer such main memory database appliances, like SAP HANA [31] and

Oracle Exalytics [65], or have incorporated main-memory technology, such

as IBM Blink [10], to accelerate existing products.

While memory densities have been increasing, at the other end of the

motherboard, another big change has been underfoot. Driven by power and

heat dissipation considerations, about seven years ago, processors started

moving from single core to multiple cores (i.e. multicore). The processing

component has moved even further now into multi-sockets, and today multi-

socket configurations are common in database servers (with each socket

having multiple cores).

This chapter focuses on the workhorse operation of an analytical query

processing engine, namely the equijoin operation. As is readily recognized,

an equijoin operation is a common and expensive operation in analytics

applications, and efficient join algorithms are critical in determining the

overall performance of a main-memory DBMS.

Naturally, there has been a lot of recent interest in designing and eval-

uating main memory equijoin algorithms. The current literature, however,

provides a confusing set of answers about the relative merits of different

join algorithms. For example, we showed in Chapter 2 showed how the

hash join can be adapted to single-socket multicore main memory config-

57

urations. Then, last year Albutiu et al. [5] showed that on multi-socket

configurations, a new sort-merge join algorithm (called MPSM) far outper-

formed the hash join algorithm proposed in Chapter 2. All of these studies

are set against the backdrop of an earlier study by Kim et al. [54] that

described how sort-based algorithms are likely to outperform hash-based

algorithms in future processors. At the same time, the study in [5] did not

fully consider hash-based algorithms that are multi-socket friendly as they

simply used the hash algorithm designed in Chapter 2, which was only de-

signed for a single socket system. Thus, there is no clear answer regarding

what equijoin algorithm works well, and under what circumstances, in main

memory, multi-socket, multicore environments. We address this gap in the

current research herein.

We systematically study hash-based and sort-based join algorithms in a

multi-socket main memory setting. We assume the common Non-Uniform

Memory Architecture (NUMA) model for memory accesses, i.e. memory

is locally connected to each socket, but can be globally accessed from any

socket, though “remote” accesses are more expensive than “local” accesses.

We build on previous work, and adapt the hash join algorithm from [9] for

a multi-socket setting. We also consider the recently proposed massively

parallel sort-merge (MPSM) join algorithm [5], in addition to two more

traditional sort merge join variants. We then identify two common physical

properties of the input data, that greatly impact the overall performance of

each algorithm. The two physical properties are (1) input being partitioned

on the join key, and (2) input being pre-sorted on the join key. We also

briefly consider how physical properties of the input affect the physical

properties of the output of each join operator, as that potentially impacts

which join algorithm to use when evaluating queries with multiple joins.

Finally, previous work in this space has largely ignored the issue of

the working memory space that is needed to perform the join operation.

With large inputs, and the need to keep all the data in main memory,

58

the memory footprint of the join algorithm becomes an important practical

consideration. In this chapter we precisely characterize the memory demand

of all the join algorithms that we study.

Our results highlight that it is too early to dismiss the hash join as

a viable option for ad hoc equijoin processing in main memory DBMSs.

In fact, in many cases the hash join algorithm far outperforms the sort-

based methods. We also find that sort-based methods become competitive

only when one of the join input is pre-sorted. In addition, the memory

footprint of the hash join algorithm is generally smaller than that of the

sort-based methods. Thus, when evaluating complex queries, optimizers

may still favor the hash join algorithm in some cases. Our study concludes

that main memory DBMSs should strongly consider implementing both

hash-based and sort-based algorithms, and they must also pay attention to

the memory footprint of the join algorithm. For more complex queries, it is

necessary to take into account the physical properties input and the output

of each join method to achieve the best performance.

The key contributions are as follows: First, we compare this hash join

algorithm with three flavors of sort-based join algorithms, and conduct a

comprehensive study of these join methods. Our results show that the

hash join algorithm is competitive in many cases, and thus should not

be immediately dismissed when building modern main memory DBMSs.

Second, we carefully study the impact of the physical properties of the input

and output of the join algorithms, and characterize each algorithm based

on this dimension. This information is important when building query

optimizers for main memory DBMSs. Finally, we also characterize the

memory footprint that is required to run each join algorithm, as this is also

an important practical consideration, which has been generally overlooked

in previous work.

The remainder of this chapter is organized as follows. Section 3.2 de-

scribes related work in this area. We introduce the join algorithms in Sec-

59

tion 3.3, and provide implementation details in Section 3.4. We continue

with the experimental evaluation in Section 3.5, and Section 3.6 contains

concluding remarks.

3.2 Recent related work

There has been a lot of work on analyzing and comparing the performance

of sort-based and hash-based join methods in the broader context of a rela-

tional query execution engine. An early performance model was described

by DeWitt et al. [27], and Graefe introduced a widely-used pull-based model

for encapsulating parallelism with the Volcano system [36]. Graefe [37] has

also explored the strengths and weaknesses of sort-based or hash-based

query execution plans in a disk-based relational database management sys-

tem.

More recently, Harizopoulos et al. [43] explore how one can exploit shar-

ing opportunities among multiple queries in the context of a disk-based sys-

tem. Arumugam et al. [8] experiment with the DataPath engine, which is

built around a push-based model. Giannikis et al. [34] built the SharedDB

system and demonstrate that sharing opportunities can be exploited for

performance in non-OLAP workloads that also do updates. Finally, Neu-

mann [63] proposes leveraging the compiler to compile entire queries into

a highly optimized operator to improve the performance of a main-memory

engine.

3.3 Join algorithms

In this section, we describe key main memory join algorithms that have been

recently proposed. We first briefly present each algorithm, and then describe

how each algorithm fares with respect to the following three factors: (1)

memory traffic and access pattern, (2) computation needed per tuple, and

60

(3) working memory size requirements. Paying attention to the first factor,

memory accesses is important because the CPU may stall while waiting

for a particular datum to arrive. Such stalls have been shown to have a

significant impact on performance [4]. As modern CPUs pack more than

ten cores per die, the available memory bandwidth per hardware thread has

been shrinking, which means that access to memory is becoming relatively

more expensive than in the past. The second factor, computation per tuple,

needs to be low enough to ensure that the system processes data at a rate

close to the memory transfer speed and does not become CPU-bound. The

last factor, working memory size, is important because memory is a precious

storage medium, and using it judiciously can allow a main memory DBMS

to keep a bigger database in RAM.

We describe each algorithm assuming that the query engine is built

using a parallel, operator-centric, pull-based model [36]. In this model, a

query is a tree of operators, and T worker threads are available to execute

the query. The leaves of the tree read data from the base tables or indexes

directly. To execute a query, each operator recursively requests (“pulls”)

data from one or more children, processes them, and writes the results in

an output buffer local to each worker thread. The output buffer is then

returned to the parent operator. Multiple worker threads may concurrently

execute (part of) the same operator.

When the algorithm operates on a single source, such as the partitioning

and sorting algorithms we describe below, we use R to denote the entire

input, and |R | to denote the cardinality (number of tuples) of the input.

When the algorithm needs two inputs, such as the join algorithms, we use

R and S to refer to each input, and we assume that |R | ≤ |S |. In the

description of each join algorithm that follows, we focus on equi-joins: an

output tuple is produced only if the join key in R is equal to the join key

in S.

61

3.3.1 Partitioning

The partitioning operation takes as inputs a table R and a partitioning

function p(·), such that p(r) is an integer in [1, P] for all tuples r ∈ R. R is

partitioned on the join key if the partitioning function p(·) ensures that if

two tuples r1, r2 ∈ R have equal join keys, then p(r1) = p(r2). The output of

the partitioning operation is P partitions of R. We use Ri, where i ∈ [1, P],

to refer to the partition whose tuples satisfy the property p(r) = i, for

r ∈ R.

Partitioning plays a key role in intra-operator parallelism in various

DBMS settings, since once the input is partitioned, different worker threads

can operate on different partitions [23, 28, 68] in parallel. The partitioning

algorithm described here is the parallel radix partitioning described by Kim

et al. [54], which is in turn based on the original radix partitioning algo-

rithm by Boncz et al. [16]. The main idea behind this parallel partitioning

algorithm is that one can eliminate expensive latch-based synchronization

during repartitioning, if all the threads know how many tuples will be stored

in each partition in advance.

This partitioning algorithm works as follows. Let T be the number

of threads that participate in the repartitioning. The algorithm starts by

having each thread i, where i ∈ [1, T], construct an empty histogram Hi

with P bins. We use Hi(t) to refer to bin t of the histogram Hi, where

t ∈ [1, P]. Every thread then reads a tuple r from the input table R,

increments the count for the bin Hi

(

p(r)
)

, and stores the tuple r in a

(NUMA) local buffer1. This process continues until all the tuples in R

have been processed. Now the size of the output partition Rt, where t ∈

[1, P], can be computed as
∑

i Hi(t). In addition, thread i can write its

output at location Li(t) =
∑

k∈[1,i)Hk(t) inside this partition Rt, without

1In general, it is faster to buffer the input locally than it is to re-evaluate the subquery
that produces it. The buffering step can be eliminated in the special case where the input
is in a materialized table.

62

interfering with any other thread. Finally, the actual repartitioning step

takes place, and thread i reads each tuple r from its buffer, computes the

output partition number p(r), and writes r to the output location Li

(

p(r)
)

in the output partition Rp(r). The local buffer can be deallocated once each

thread has finished processing the R tuples.

When it comes to memory traffic, this partitioning algorithm first scans

R twice, once from the input and once from each thread’s local buffer, for a

total of 2× |R | memory read operations and |R | memory write operations.

These reads and writes are sequential and to the local NUMA memory,

making this phase extremely efficient. Producing the output partitions is

a more costly operation as the writes may target remote NUMA memory.

During repartitioning, the algorithm needs to keep track of P output loca-

tions, and as the number of output partitions P increases, one may observe

a significant number of TLB misses on memory writes. The TLB pressure

can be reduced by partitioning in multiple passes [16]. Overall, if partition-

ing is carried out in one pass, this partitioning algorithm incurs 2 × |R |

memory reads and 2× |R | memory writes.

Partitioning involves minimal computation, as the algorithm only needs

to evaluate p(·) twice, once to create the histogram and once during repar-

titioning, for a total of 2 × |R | evaluations. In general, evaluating the

partitioning function takes only a few cycles, which is a small fraction of

the typical memory access latency (hundreds of cycles). The evaluation

therefore generally occurs in parallel with the data transfer.

The memory demand during the partitioning algorithm consists of 2×

|R | tuples for the input and output buffers, and an array of P × T integers

for the histogram, where P is the number of partitions and T is the number

of threads. Once the repartitioning operation is complete, the input buffers

and the histogram are deallocated, bringing the total space requirement

down to |R | tuples.

63

3.3.2 Hash join

The algorithm described here is the main-memory hash join proposed in

Chapter 2, adapted to ensure that the hash table is striped across the local

memory of all threads that participate in the join [9]. But, exactly as the

original algorithm, it is otherwise oblivious to any NUMA effects.

The algorithm has a build phase and a probe phase. At the start of

the build phase, all the threads allocate memory locally. The union of

these memory fragments constitutes a single hash table that is shared by

all the threads, where logically adjacent hash buckets are physically located

in different NUMA nodes. (Tuples in a particular chain always reside on

the same NUMA node.) Thread i then reads a tuple r ∈ R and hashes on

the join key of r using a pre-defined hash function h(·). It then acquires a

latch on bucket h(r), copies r in this bucket, and releases the latch. The

memory writes required for this operation may either target local or remote

NUMA memory. The build phase is completed when all the R tuples have

been stored in the hash table.

During the probe phase, each thread reads a tuple s ∈ S, and hashes on

the join key of s using the same function h(·). For each rh(s) tuple in the

hash bucket h(s), the join keys of rh(s) and s are compared and the tuples

are joined together, if the join keys match. These memory reads may either

target local or remote memory depending on the physical location of the

hash bucket h(s). Because the hash table is only read during the probe

phase, there is no need to acquire latches. When all the S tuples have been

processed, the probe phase is complete and the memory holding the hash

table can be reclaimed. If the R tuples processed by a thread are pre-sorted

or pre-partitioned on the join key, neither property will be reflected in the

output. However, if the S tuples that are processed by a thread are pre-

sorted or pre-partitioned on any S key, the tuples produced by this thread

will also be sorted or partitioned on the same key.

The hash join algorithm exhibits a memory access pattern that is hard to

64

predict, and represents a demanding workload for the memory subsystem.

Building a hash table requires writing |R | tuples at the locations pointed

to by the hash function. A good hash function would pick any bucket

with the same probability for each distinct join key, causing these writes to

be randomly scattered across the hash table buckets. This random access

pattern leaves little room for performance improvements from the hardware,

such as prefetching, and might cause expensive remote write traffic if the

hash bucket of interest resides in a remote NUMA node. Similarly, probing

the hash table causes |S | reads, and these reads are randomly distributed

across all the hash buckets, causing remote memory reads from other NUMA

nodes. Each probe lookup reads the entire chain of tuples associated with a

hash bucket, but, in the absence of skew, the chain length is low in correctly-

sized hash tables [35]. Overall, the hash join algorithm performs |R | writes

and |S | reads with a random memory access pattern, potentially to remote

NUMA nodes.

The computational overhead of the hash join algorithm is mainly the

cost of evaluating the hash function and comparing the join keys. The

algorithm needs to compute the hash function for |R | tuples in the build

phase, and |S | tuples in the probe phase, for a total of |R | + |S | hash

function evaluations. The number of cycles spent on computing the hash

value per tuple depends on the chosen hash function and the size of the

join key. In general, this number ranges from one or two cycles for hash

functions based on bit masking and shifting, to several cycles per byte for

hash functions that involve one multiplication per byte of input, like FNV-

1a [32]. Finally, the join keys need to be compared to confirm whether the

values are indeed equal or there has been a hash collision.

When it comes to memory footprint, the hash join algorithm needs to

buffer all the tuples in the build table R. Additionally, each hash bucket

needs to store metadata. For example, in our prototype implementation

(which is described in detail in Section 3.4.2) each bucket needs to store

65

a latch for synchronization, a counter for how many bytes in this bucket

are unused, and a pointer to another bucket in case of overflow. In order

to exhibit good probe performance, the hash chains must be kept short.

Therefore, hash tables are commonly sized such that the number of buckets

is within the same order of magnitude as the cardinality of the build side

R. As a consequence, the memory needed to store bucket metadata is

significant, and can even be greater than the size of R if the size of each R

tuple is small.

3.3.3 In-place sorting

Work on sorting algorithms can be traced back to the earliest days of com-

puting, and textbooks on data structures, databases and algorithms com-

monly have a chapter dedicated to sorting. Graefe has written a survey [38]

of sorting techniques used by commercial DBMSs, and fast parallel sort

algorithms for main memory DBMSs is an active research area [54, 71].

We ultimately decided to use introspective sort [62], which is a popular

in-place sorting algorithm, for three reasons. First, many highly-optimized

sorting algorithms make strong assumptions about the width of the tuple

and the physical placement of the data. In general, such algorithms use very

small tuple sizes (for example, only 8 bytes in [54]), and expect tuples to be

contiguously stored in memory, regardless of the size of the input. In the

context of a query execution engine that stores tuples of a user-defined size

and manages its own memory, the performance of these specialized algo-

rithms, compared to their generic counterparts, remains an open question.

The second reason for choosing introspection sort is that it is an established,

well-studied algorithm, and is implemented in many widely-used and heavily

optimized libraries, like the C++ standard template library. Our findings

are therefore less likely to be affected by suboptimal configuration settings

or poorly optimized code. Finally, introspection sort has been used in re-

cently published results, for example it is the last-phase sorting algorithm

66

in Albutiu et al. [5]. Using the same algorithm promotes uniformity with

prior work.

Introspective sort is a hybrid algorithm that starts with a sorting algo-

rithm with a good average-case performance, quicksort, and then switches

to an algorithm with better worst-case performance, heapsort, if it detects

that quicksort is likely to exhibit worst-case performance when sorting a

particular partition. Introspective sort bases this decision on the recursion

depth, and the size of the data to be sorted.

We have also experimented with a sort-merge algorithm that implements

a bitonic merge network using SIMD instructions to exploit data-level par-

allelism [54]. We show how query response time is affected by the input

tuple size and the choice of the sorting algorithm in Appendix A.

Sorting is an expensive operation, with respect to memory traffic, as the

introspective sorting algorithm reads and writes Θ(|R |log |R |) tuples, in the

average case. The memory access pattern is random, but all operations are

performed in a buffer that is local to each processing thread, so all memory

operations target the local NUMA memory. The algorithm sorts in-place,

therefore the memory space needed is |R | tuples.

3.3.4 Streaming merge join (STRSM)

This algorithm is a parallel version of the standard merge join algorithm

[27]. It is assumed that both R and S are already partitioned on the join

key with some partitioning function that has produced as many partitions

as the number of threads that participate in the join. If T is the number

of threads, we use Ri to refer to the partition of R that will be processed

by thread i ∈ [1, T], and similarly we use Si to denote the partition of S

that will be processed by the same thread i. Furthermore, this algorithm

requires that both Ri and Si are already sorted on the join key.

Each thread i reads the first tuple r from Ri and the first tuple s from

Si. If the join keys match, then an output tuple is produced. If the r tuple

67

has a smaller join key value than the s tuple, then the r tuple is discarded

and the next tuple from Ri is read. Otherwise, the s tuple is discarded and

the next Si tuple is read. This process is repeated until either Ri or Si are

depleted. The output of each thread is sorted and partitioned on the join

key.

The streaming merge join algorithm is extremely efficient, if the input

is already sorted and partitioned. When it comes to memory operations,

the algorithm reads the input once and produces results on-the-fly. This

is the minimum number of memory operations needed, assuming that the

join algorithm needs to read the input to produce correct results. The read

access pattern is sequential within each Ri and Si input for each thread, a

pattern which is easily optimized with data prefetching by the hardware.

The computational overhead is minimal as it only entails join key compar-

isons. Finally, the memory requirements are also negligible: The memory

manager needs to provide sufficient memory to each thread i to buffer the

most commonly occurring join key in either Ri or Si. Across all the T

threads, this can be as little space to hold one tuple per thread, for a total

of T tuples of buffer space, or at most min(|R |, |S |) tuples of buffer space

for the degenerate case where the join is equivalent to the cartesian product.

3.3.5 Range-partitioned MPSM merge join

This algorithm is the merge phase of the range-partitioned P-MPSM algo-

rithm [5]. The algorithm requires R to be partitioned in T partitions on

the join key. We keep the notation introduced in Section 3.3.4, and use

Ri to refer to the partition of R that will be processed by thread i, where

i ∈ [1, T]. The algorithm requires that each Ri partition has already been

sorted on the join key.

Each thread i first allocates a private buffer Bi in NUMA-local memory,

and starts copying tuples from S into Bi. (Bi is not a partition of S as

two tuples with the same key might be processed by different threads, and

68

thus be stored in different buffers.) When S is depleted, each thread i sorts

its Bi buffer in-place, using the algorithm described in Section 3.3.3. Let

Bj
i be the region in the Bi buffer that corresponds to the tuples that join

with tuples in partition Rj . Thread i then computes the offsets of every Bj
i

region in the Bi buffer, for each j ∈ [1, T]. Because Bi is sorted on the join

key, one can compute the partition boundary offsets efficiently using either

interpolation or binary search. Once all the threads have computed these

offsets, thread i proceeds to merge Ri and Bi
1 using the streaming merge

join algorithm described in Section 3.3.4. Thread i continues with merging

Ri with Bi
2, then Ri with Bi

3, and so on, until Ri has been fully merged with

Bi
T . The memory for the Bi buffer can only be reclaimed by the memory

manager after all the threads have completed. The output of the MPSM

join is partitioned on the join key with the same partitioning function as R

per thread. If S is range-partitioned on the join key, even with a different

partitioning function than that for R, each thread i can produce output

that is sorted on the join key by processing each Bi
j fragment in order.

The MPSM algorithm can cause a lot of memory traffic. The number of

tuples that MPSM reads grows linearly with the number of threads partici-

pating in the join; this algorithm reads a total of |R |×T+ |S | tuples, where

T is the number of threads. In contrast, both the hash join and streaming

merge join algorithms, presented in Sections 3.3.2 and 3.3.4 respectively,

perform a constant number of reads, regardless of the number of participat-

ing threads. On the positive side, the access pattern of MPSM is sequential

and only two inputs are merged at any given time per thread. This memory

access pattern is highly amenable to hardware prefetching. In addition, the

algorithm is designed so that all the T scans of each Ri partition are local

to thread i, which minimizes the traffic to different NUMA nodes. Because

of these two properties, we have observed that this algorithm achieves very

high read rates, as discussed further in Section 3.5.2.

The main computational overhead of the MPSM join is the extra T − 1

69

join key comparisons that are performed on the join key of each Ri tuple

per thread, when scanning Ri multiple times. This comparison costs a few

cycles per tuple, but it is negligible when compared to the transfer cost of

reading R from local memory T times. In addition, the key comparison has

little impact on response time as it is generally overlapped with the memory

access, an operation that typically takes hundreds of cycles per tuple.

Regarding memory footprint, the MPSM join needs to store the entire S

input into the Bi buffers, so the minimum memory capacity requirement is

|S | tuples. Although it is not necessary for correctness, we have observed

that buffering R significantly improves performance: As the join is com-

monly an operator that is closer to the root than the leaves of a query tree,

it is preferable to execute the subquery that produces R once, buffer the

output and reuse this buffer T − 1 times, than it is to execute the entire R

subquery T times. Overall, the MPSM join needs |R |+ |S | tuples of space

to perform well.

3.3.6 Parallel merge join (PARSM)

This algorithm is a variation of the MPSM join algorithm described above.

Instead of scanning the R input T times, this algorithm scans R once and

performs a merge of T + 1 inputs on the fly. Compared to the original

MPSM merge join algorithm, this variant reduces the volume of memory

traffic and always produces output sorted on the join key, at the cost of

a non-sequential access pattern when reading S tuples. As before, the

algorithm assumes R has already been partitioned on the join key in T

partitions, and that each partition Ri is sorted on the join key.

Each thread i that participates in the parallel merge join algorithm starts

by reading and storing tuples from S in the private buffer Bi. Then, thread

i sorts Bi on the join key, and the Bj
i regions are computed exactly as in

the MPSM algorithm. The difference in the parallel merge join algorithm

lies in how thread i merges all the Bi
j regions with Ri. The original MPSM

70

algorithm performs T passes, and then merges two inputs at a time. In

the parallel merge join algorithm, thread i merges all Bi
j buffers from the

S side with the Ri partition in one pass, where j ∈ [1, T]. This is a parallel

merge between T inputs for the S side, and one input for the R side, which

results in T + 1 input tuples being candidates for merging at any given

time. The output of the parallel merge join is partitioned on the join key

per thread, with the same partitioning function as R, and each thread’s

output is always sorted on the join key.

The parallel merge join causes significantly lower memory traffic com-

pared to the MPSM join. The biggest gain comes from reading the inputs

once, so the number of tuples that the parallel merge join reads remains

constant regardless of the number of threads participating in the join. The

memory access pattern, however, is very different. During the merge, each

thread i needs to compare the join key of a single tuple from Ri with the

join key of the first unprocessed tuple of each Bi
j region, for a total of T join

candidate tuples from S. As we will show in Section 3.5.2, keeping track of

T + 1 locations stresses the TLB, causing frequent page walks which waste

many cycles. This access pattern also makes hardware prefetching less ef-

fective: Assume that the second tuple was automatically prefetched when

reading from Bi
1. This second Bi

1 tuple will be processed after the first

tuple from Bi
T has been processed. The probability of having evicted the

cache line holding the second Bi
1 tuple increases as the number of threads

T grows.

The computational overhead of the parallel merge join is minimal, as

the algorithm only performs join key comparisons over the join keys of both

the R and S inputs, which are scanned once. When it comes to memory

space, unlike the MPSM algorithm, each Ri partition is scanned once by

each thread i so there is no performance benefit in buffering the S input.

The parallel merge join algorithm therefore only needs sufficient memory

to buffer the entire S input.

71

3.4 Evaluation methodology

3.4.1 Hardware

The hardware we use for our evaluation is a Dell R810 server with four Intel

Xeon E7-4850 CPUs clocked at 2GHz, running RedHat Enterprise Linux

6.0, with Linux kernel 2.6.32-279. This is a system with four NUMA nodes,

one for each die, and 64 GB per NUMA node, or 256 GB for the entire

system. Each E7-4850 CPU packs 10 cores (20 hyper-threads) that share a

24MB L3 cache, and have a private 256KB L2 cache and a private 32KB L1

data cache, and each cache line is 64 bytes wide. The L1 data TLB has 64

entries. Each socket is directly connected to every other socket via a point-

to-point QPI link, and a single QPI link can transport up to 12.8 GB/sec in

each direction. Finally, each socket has its own memory controller, which

has 4 DDR3 channels to memory for a total theoretical bandwidth of about

33.3 GB/sec per socket.

We refer to a number of performance counters when presenting our

experimental results in Section 3.5.2. We have written our own utility to

tap into the Uncore counters, which are described in detail in [51]. When

we refer to memory reads, we count the L3 cache lines filled as reported by

the LLC S FILLS event. When we refer to memory writes, we count the L3

cache lines victimized in the M state, or the LLC VICTIMS M event. We

obtain the QPI utilization by comparing the null idle flits sent across all

QPI links (event NULL IDLE) with the number of idle flits sent when the

system is idle. We then report the utilization of the most heavily utilized

QPI link (ie. the link most likely to be a bottleneck) averaged over the

measurement interval. Finally, we obtain timings for the TLB page miss

handler by measuring the DTLB LOAD MISSES.WALK CYCLES event.

72

J
o
in

o
u
tp
u
t

P
h
y
si
ca
l

P
h
y
si
ca
l

L
a
b
el

P
er
-t
h
re
a
d

p
a
rt
it
io
n
ed

p
ro
p
er
ty

p
ro
p
er
ty

in
Q
u
er
y
p
la
n

jo
in

o
u
tp
u
t

a
cr
o
ss

o
f
S

o
f
R

g
ra
p
h

so
rt
ed
?

th
re
a
d
s?

ra
n
d
o
m

ra
n
d
o
m

H
A
S
H

B
u
il
d
h
a
sh

ta
b
le

o
n
R
,
P
ro
b
e
h
a
sh

ta
b
le

w
it
h
S
,
S
u
m

N
o

N
o

S
T
R
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
P
a
rt
it
io
n
S
,
S
o
rt

S
,
S
tr
ea
m
in
g
m
er
g
e,

S
u
m

Y
es

Y
es

M
P
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
S
o
rt

S
,
M
P
S
M

m
er
g
e,

S
u
m

N
o

Y
es

P
A
R
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
S
o
rt

S
,
P
a
ra
ll
el

m
er
g
e,

S
u
m

Y
es

Y
es

so
rt
ed

H
A
S
H

B
u
il
d
h
a
sh

ta
b
le

o
n
R
,
P
ro
b
e
h
a
sh

ta
b
le

w
it
h
S
,
S
u
m

N
o

N
o

S
T
R
S
M

P
a
rt
it
io
n
S
,
S
o
rt

S
,
S
tr
ea
m
in
g
m
er
g
e,

S
u
m

Y
es

Y
es

M
P
S
M

S
o
rt

S
,
M
P
S
M

m
er
g
e,

S
u
m

N
o

Y
es

P
A
R
S
M

S
o
rt

S
,
P
a
ra
ll
el

m
er
g
e,

S
u
m

Y
es

Y
es

h
a
sh

H
A
S
H

P
ro
b
e
h
a
sh

ta
b
le

w
it
h
S
,
S
u
m

N
o

N
o

S
T
R
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
P
a
rt
it
io
n
S
,
S
o
rt

S
,
S
tr
ea
m
in
g
m
er
g
e,

S
u
m

Y
es

Y
es

M
P
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
S
o
rt

S
,
M
P
S
M

m
er
g
e,

S
u
m

N
o

Y
es

P
A
R
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
S
o
rt

S
,
P
a
ra
ll
el

m
er
g
e,

S
u
m

Y
es

Y
es

so
rt
ed

ra
n
d
o
m

H
A
S
H

B
u
il
d
h
a
sh

ta
b
le

o
n
R
,
P
ro
b
e
h
a
sh

ta
b
le

w
it
h
S
,
S
u
m

Y
es

N
o

S
T
R
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
S
tr
ea
m
in
g
m
er
g
e,

S
u
m

Y
es

Y
es

M
P
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
M
P
S
M

m
er
g
e,

S
u
m

Y
es

Y
es

P
A
R
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
P
a
ra
ll
el

m
er
g
e,

S
u
m

Y
es

Y
es

so
rt
ed

H
A
S
H

B
u
il
d
h
a
sh

ta
b
le

o
n
R
,
P
ro
b
e
h
a
sh

ta
b
le

w
it
h
S
,
S
u
m

Y
es

N
o

S
T
R
S
M

S
tr
ea
m
in
g
m
er
g
e,

S
u
m

Y
es

Y
es

M
P
S
M

M
P
S
M

m
er
g
e,

S
u
m

Y
es

Y
es

P
A
R
S
M

P
a
ra
ll
el

m
er
g
e,

S
u
m

Y
es

Y
es

h
a
sh

H
A
S
H

P
ro
b
e
h
a
sh

ta
b
le

w
it
h
S
,
S
u
m

Y
es

N
o

S
T
R
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
S
tr
ea
m
in
g
m
er
g
e,

S
u
m

Y
es

Y
es

M
P
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
M
P
S
M

m
er
g
e,

S
u
m

Y
es

Y
es

P
A
R
S
M

P
a
rt
it
io
n
R
,
S
o
rt

R
,
P
a
ra
ll
el

m
er
g
e,

S
u
m

Y
es

Y
es

T
ab

le
3.
1:

L
is
t
of

q
u
er
y
p
la
n
s
th
at

w
e
ev
al
u
at
e:

“r
an

d
om

”
m
ea
n
s
tu
p
le
s
ar
e
in

ra
n
d
om

or
d
er

an
d
n
ot

p
ar
ti
ti
on

ed
;
“s
or
te
d
”
m
ea
n
s
so
rt
ed

on
th
e
jo
in

ke
y
an

d
ra
n
ge
-p
ar
ti
ti
on

ed
;
“h

as
h
”
m
ea
n
s
st
or
ed

in
a
h
as
h

ta
b
le

an
d
h
as
h
ed

on
th
e
jo
in

ke
y.

73

3.4.2 Query engine prototype

We have implemented all algorithms described in Section 3.3 in a query

engine prototype written in C++. The engine is parallel and NUMA-aware,

and can execute simple queries on main memory data. The engine expects

queries in the form of a physical plan, which is provided by the user in a

text file. The plan carries all the information necessary to compute the

query result. All operators in our query engine have a standard interface

consisting of start(), stop() and next() calls. This is a pull-based model

similar to the Volcano system [36]. We amortize the cost of function calls;

each next() call returns a 64KB array of tuples.

Our query engine prototype implements all the algorithms described in

Section 3.3. We base the hash join implementation on the code described in

Chapter 2, which is publicly available. We have extended it to be NUMA-

aware by allocating the entire hash bucket i from NUMA node (i mod N),

where N is the number of NUMA nodes in the system. This means that

tuples in the same hash bucket always reside in the same NUMA node, and

reading hash buckets sequentially accesses all NUMA nodes in a round-

robin fashion. We size each hash bucket so that it fits two tuples before

there is an overflow. In addition to the usable space, we allocate 16 bytes of

metadata for each bucket, and these are used for: (1) a latch, (2) a counter

holding the number of unused bytes in this hash bucket, and (3) an overflow

pointer to a next bucket. The number of hash buckets is always a power

of two. If the hash table has 2b hash buckets, we use the hash function

h(x) = (x ∗ 2654435761)mod 2b to compute the hash value for integers. We

then size the hash table such that the load factor is greater than one, but

less than two. The original code preallocated the first hash bucket, and we

do likewise.

We implemented the MPSM merge join algorithm from scratch based on

the description of the P-MPSM variant in [5], as the original implementation

is not available.

74

3.4.3 Metrics

The two metrics we report are response time and memory footprint. Short

query response times are, obviously, important for a main memory DBMS.

Memory footprint is perhaps a less obvious, but also an important metric.

The first reason is that query plans that use less memory allow the DBMS to

admit more queries, increasing throughput. Second, main memory DBMSs

use RAM both as working memory for active queries, and as storage for user

data. A main-memory DBMS that selects plans that use working memory

frugally can keep a larger database in memory, improving the overall utility

of the system.

3.5 Experimental results

3.5.1 Workload

In our experimental evaluation we simulate the expensive join operations

that occur when executing ad-hoc queries against a decision support database.

Such a database typically has many smaller dimension tables that contain

categorical information, such as customer or product details, and a few

large fact tables that capture events of business interest, like the sale of a

product.

To speed up query processing, a table might have already been pre-

processed in some form, for example, all tuples might have already been

sorted on some particular key. We refer to such pre-processing as the phys-

ical property of a table. We focus on three such properties:

1. Random, which corresponds to the case where no pre-processing has

been done and data is in random order. Random input is processed by

worker threads in any order.

2. Sorted, which corresponds to the case where the input is already sorted

75

on the join key. Sorted input can easily be partitioned among worker

threads in distinct ranges, as the range partition boundaries can be com-

puted from existing statistics on the input.

3. Hash, which reflects the case where a table is stored in a hash table,

indexed on a particular key. This type of pre-processing is common for

dimension tables that are small and are updated less frequently. Storing

the large fact table in a hash table may be prohibitive in terms of space

overhead, and maintaining the hash table is costly in the presence of

updates. We therefore only consider this physical property for dimension

tables.

Query plans

A common pattern in decision support queries is the equijoin between a

dimension table and a fact table, followed by an aggregation. Assuming

that the dimension table R has two integer attributes R.a and R.b, and the

fact table S has two integer attributes S.c and S.d, for all the experiments

described here, we produce plans corresponding to the following SQL query:

SELECT SUM(R.b + S.d) FROM R, S WHERE R.a = S.c

Depending on the physical properties of R and S, this logical query

may be translated into a number of physical execution plans. For our

experimental evaluation, we consider candidate plans that are formed by

combining the algorithms presented in Section 3.3. All query plans do a

join between R and S, and materialize the output which is pipelined to the

final operator, the aggregation. The aggregate operation takes a negligible

amount of time (less than 1%), but this approach forces us to look at the

holistic effect of a join algorithm in a complex pipeline, where results have to

be piplelined to the next stage of the query processing pipeline. The exact

query plans we execute, for different combinations physical properties of R

76

and S, are shown in Table 3.1. For all our experiments, we execute each

query plan in isolation, and use 80 worker threads, which is the number of

hardware contexts our system supports.

Datasets

We use two datasets for evaluation. Both datasets model an ad-hoc equijoin

between the dimension table R, and the fact table S. The dimension table

R contains the primary key and the fact table S contains the foreign key.

R has 800× 220 tuples and each tuple is sixteen bytes wide. Each R tuple

consists of an eight-byte unique primary key in the range of
[

1, 800× 220
]

,

and an eight-byte random integer.

The fact table S has four times as many tuples as R, namely 3200× 220

tuples, and each tuple is also sixteen bytes wide. We picked the one-to-

four ratio to match the cardinality ratios of a primary-key foreign-key join

between tables Orders and LineItem, or Part and PartSupp of the TPC-H

decision support benchmark. The first eight-byte attribute of an S tuple

is the foreign key of R, and the second eight-byte attribute is a random

integer. The cardinality of the output of the primary-key foreign-key join

is the cardinality of S, or 3200× 220 tuples.

Uniform dataset: This dataset does not have any skew. Every primary

key in R occurs in S exactly four times.

Skewed dataset: For this dataset, the foreign keys in S are generated

using the Zipf distribution with parameter s = 1.05. With this setting, the

top 1000 keys occur nearly half the time (48%). We chose this parameter

to match the “low skew” dataset that was used in Section 2.5.1.

77

0 20 40 60 80 100 120

Response time (sec)

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(a) R is in random order

0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(b) R is sorted in ascending join key
order

0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(c) R is in hash table on join key

Figure 3.1: Response time (in seconds) and memory consumption (in GB)
when S is in random order, uniform dataset

78

In Figure 3.1(a) 3.1(b) 3.1(c) 3.2(a) 3.2(b) 3.2(c)

HASH
S in random order S in join key order

R rnd R ord R ht R rnd R ord R ht

Build HT on R 4.2 5.0 — 5.1 5.6 —
Probe HT with S 13.5 13.7 13.6 6.0 5.3 6.0

Query 18.8 18.8 13.9 11.1 11.1 6.1

STRSM
S in random order S in join key order

R rnd R ord R ht R rnd R ord R ht

Partition R 1.5 — 1.5 2.8 — 2.8
Sort R 7.2 — 7.2 7.3 — 7.3
Partition S 6.4 8.8 6.4 — — —
Sort S 36.3 36.7 36.3 — — —
Stream merge 5.9 2.0 5.9 1.8 1.9 1.8

Query 62.7 52.3 62.7 11.9 2.0 12.0

MPSM
S in random order S in join key order

R rnd R ord R ht R rnd R ord R ht

Partition R 3.4 — 3.4 2.7 — 2.7
Sort R 5.9 — 5.9 6.7 — 6.7
Sort S 29.2 29.1 29.2 — — —
MPSM merge 24.5 16.2 24.5 1.7 1.3 1.7

Query 69.1 51.2 69.1 16.2 7.5 16.2

PARSM
S in random order S in join key order

R rnd R ord R ht R rnd R ord R ht

Partition R 3.1 — 3.1 2.7 — 2.7
Sort R 5.8 — 5.8 6.7 — 6.7
Sort S 28.9 29.0 28.9 — — —
Parallel merge 35.6 28.2 35.6 4.8 4.4 4.8

Query 81.3 63.4 81.3 19.5 10.6 19.5

Table 3.2: Time spent in each operator for the uniform dataset. “R rnd”
means that R is in random order, “R ord” means that R is sorted in join
key order, and “R ht” means that R is in a hash table on the join key.
“Query” reflects the query response time as shown in Figures 3.1 and 3.2,
and is not the sum due to synchronization and buffering overheads that are
not reflected in the breakdown above.

79

3.5.2 Results from the uniform dataset

As described in Section 3.4.3, we measure cost both in terms of response

time, and memory space. In all figures in this chapter, we plot the response

time in the x-axis in seconds, and the memory consumption in gigabytes

(230 bytes) on the y-axis. We use “HASH” for the hash-based plan, and the

“SM” suffix for the three sort-based query plans: “STRSM” for the plan

with the streaming merge join operator, “MPSM” for the plan containing

the MPSM merge join operator, and “PARSM” for the plan with the parallel

merge join operator. Table 3.1 shows the actual operators for each plan,

and Table 3.2 breaks down time per operator.

S in random order

We start with the case where the S table contains tuples with keys in ran-

dom join key order. This requires each algorithm to pay the full cost of

transforming the input S to have the physical property necessary to com-

pute the join, like being sorted or partitioned on the join key. In Figure 3.1

we plot the response time and the memory consumption of each plan, for

all three physical properties of R we explore: random, sorted, and hash.

We describe each in turn.

R in random order

We start with the general case where both the R and S tables contain tuples

with join keys in random order. The response time and memory demand

for all the four query plans is shown in Figure 3.1(a), and a breakdown per

operator is shown in Table 3.2, column 3.1(a).

The hash join query plan computes the query result in 18.8 seconds, the

fastest among the all four query plans. The hash join query plan also uses

the least space, needing 24.2 GB of scratch memory space, nearly all of

which (99%) is used to store the hash table. The majority of the time is

80

spent in the probe phase, which does about 1.90 memory reads per S tuple.

Because the S tuples are processed in random join key order, these reads

are randomly scattered across the shared hash table. This random memory

access pattern causes a significant number of TLB misses, with 10% of the

probe time, or 1.31 seconds, being spent on handling page misses on memory

loads. As the hash table is striped across all the NUMA nodes, the cross-

socket traffic is the highest among all the query plans: we have observed an

average QPI utilization of 34%, which means that remote memory access

requests might get queued at the QPI links during bursts of higher memory

activity.

The streaming sort-merge plan (STRSM) needs 62.7 seconds and 113 GB

of memory to produce the output, and the majority of the memory space

(100 GB) is needed to partition the S table. The majority of the time is

spent in sorting the larger S table. Repartitioning and sorting both R and

S causes significant memory traffic: 4.92 memory reads and 3.72 memory

writes are performed, on average, per processed tuple.

The MPSM sort-merge join query plan takes 69.1 seconds and 62.7 GB of

space to run. Compared to the streaming sort-merge query plan, MPSM

is only 10% slower, and, because the MPSM merge-join algorithm avoids

repartitioning the larger S table, it needs about half the space. The MPSM

merge join algorithm performs T scans of R during the merge phase (see

Section 3.3.5), which means reading an additional 0.96 TB, for this partic-

ular dataset. This causes 4.32 memory reads per S tuple, during the merge

phase, which accounts for 35% of the total time.

The parallel sort-merge query plan (PARSM) is identical to the MPSM

sort-merge join query plan, described above, for the partitioning and sort

phases. During the merge phase, however, the parallel merge join algorithm

does not partition S and does not scan R multiple times. This cuts the

memory traffic significantly, resulting in only 0.38 memory reads per S

tuple for the merge phase. Merging from 81 (T + 1) locations in parallel,

81

however, overflows the 64-entry TLB (see Section 3.3.6 for a description

of the algorithm). We observed that page miss handling on memory load

accounts for at least 37% of the merge time (13.2 seconds). The high

TLB miss rate causes the merge phase to take 11 more seconds than the

MPSM merge phase, which brings the end-to-end response time to a total

of 81.3 seconds, making the parallel merge-join plan the slowest of the four

alternatives.

Overall, when R and S are processed in random order, the hash join query

plan produces results 3.34× faster and uses 2.59× less memory than the

best sort-merge based query plan, despite the many random accesses to

remote NUMA nodes that result in increased QPI traffic.

R in ascending join key order

We now consider the case where the smaller table R is sorted, and the larger

table S is in random order. We plot the response time and memory demand

for the four query plans in Figure 3.1(b), and a breakdown per operator is

shown in Table 3.2, column 3.1(b).

The response time and memory consumption of the hash-join query plan

are 18.8 seconds and 24.2 GB respectively. Comparing with the case where

R is in random order, Figure 3.1(a), we see that performance is not affected

by whether the build side R is sorted or not. Also, the number of memory

operations and the QPI link utilization are the same as when processing R

with tuples in random physical order. This happens because the hash func-

tion we use, described in Section 3.4.2, scatters the sorted R input among

distant buckets. This results in memory accesses that are not amenable to

hardware caching or prefetching, exactly as when processing R in random

order.

Moving to the stream-merge join query plan (STRSM), we find that it

completes the join in 52.3 seconds and has a memory footprint of about

82

0 20 40 60 80 100 120

Response time (sec)

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(a) R is in random order

0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(b) R is sorted in ascending join key
order

0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(c) R is in hash table on join key

Figure 3.2: Response time (in seconds) and memory consumption (in GB)
when S is sorted in ascending join key order, uniform dataset

83

100 GB, with nearly all of this space being used for repartitioning S. There

is no need to repartition and sort R, as it is already in join key order.

Repartitioning and sorting S causes 5.25 memory reads and 3.82 memory

writes, on average, per S tuple.

The MPSM merge join query plan has a response time of 51.2 seconds and

needs 62.7 GB of memory. Sorting S takes the majority of the time, and

then the merge phase performs T scans of the pre-sorted, pre-partitioned

side R to produce the result.

The parallel merge join query (PARSM) takes 63.4 seconds to produce the

join output and needs 50.2 GB of memory space, nearly all of which is

needed to buffer and sort S. The merge phase, however, is takes 75% more

time than the MPSM merge phase, primarily due to the page miss handling

overhead associated with keeping track of T + 1 locations in parallel.

In summary, when R is sorted on the join key and the tuples of S are in

random physical order, the hash join query plan has 2.72× lower response

time and 2.07× smaller memory footprint compared to all other sort-merge

based queries.

R in hash table, on join key

We now move to the case where R is stored in a hash table created on

the join key, and the S tuples are in random order. We plot the results

in Figure 3.1(c). We observe that the three sort-based queries have sim-

ilar response time and memory consumption as when the R tuples are in

random order (cf. Figure 3.1(a)). Due to the pre-allocated space in the

hashtable buckets, no pointer chasing is needed to read the first bucket of

each hash chain, allowing for sequential reading across all NUMA nodes. R

is partitioned in buckets based on hash value, so all sort-based plans first

repartition R to create range partitions. These partitions subsequently need

to be sorted, before being processed by each merge-join algorithm. Overall,

84

these steps result in the same data movement operations as when R is in

random order.

The hash join plan can take advantage of the fact that R is already in a hash

table on the join key, as one can now skip the build phase. This reduces

the response time of the query to 13.9 seconds, which is 4.51× faster than

the fastest sort-based query. As there is no hash table to allocate, populate

and discard, the hash join algorithm now becomes a streaming algorithm,

needing a fixed amount of memory regardless of the input size. In our

prototype, the total space needed was 0.01 GB for holding output buffers,

metadata and input state.

S in ascending join key order

We now consider the case when the S table is sorted in ascending join key

order. In this case, we also assume that S is partitioned, as each thread i

can discover the boundaries of the Si partition by performing interpolation

or binary search in the sorted table S. In the results that follow, we have

discounted the cost of computing the partition boundaries in this fashion.

We plot the response time and the memory consumption of each query, for

all three physical properties of R we explore. These results are shown in

Figure 3.2.

R in random order

First we consider the case when the larger table S is sorted on the join

key, but the smaller table R is not. We plot the results in Figure 3.2(a),

and a breakdown per operator is shown in Table 3.2, column 3.2(a).

The hash join query computes the result in 11.1 seconds and needs 24.2

GB of memory space. If we compare with the case where S is in random

order, in Figure 3.1(a), we see a 1.70× improvement in response time, if S

is sorted on the join key. This happens because now that S is sorted, the

85

0 20 40 60 80 100 120

Response time (sec)

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(a) R is in random order

0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(b) R is sorted in ascending join key
order

0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(c) R is in hash table on join key

Figure 3.3: Response time (in seconds) and memory consumption (in GB)
when S is in random order, skewed dataset

86

four S tuples that match a given R tuple occur in sequence. This allows the

R tuple to be read only once and then stay in the local cache, reducing the

total number of memory operations. Looking at the performance counters,

we find that 0.36 memory reads occur per S tuple, which is 5.31× less than

the number of memory operations that happen when S is randomly ordered.

Probing the hash table with a sorted S input also results in fewer cycles

spent on TLB miss handling (0.6 seconds, or 10% of the probe time, a 2.22×

improvement), as well as lower QPI link utilization during the probe phase

(14.6% utilization on average, a 2.35× improvement) when compared with

processing a randomly ordered S table.

The streaming sort-merge join plan (STRSM) has a response time of

11.9 seconds and a memory footprint of 25.2 GB, and sorting R takes the

majority of the time. Repartitioning and sorting R is an expensive operation

in terms of memory traffic: it takes 5.02 memory reads and 3.31 memory

writes per R tuple.

In this experiment, both the MPSM and the PARSM query plans repre-

sent degenerate cases where each thread i pays the full overhead of tracking

and merging T partitions of S with its Ri partition. However, because S

is prepartitioned, T − 1 partitions are empty and the merge is a two-input

streaming merge, as described in the previous paragaph. We include the

data points here for completeness, and to demonstrate what the response

time and memory consumption would be in this setting. The MPSM plan

finishes in 16.2 seconds, which is 36% slower than the STRSM plan. The

MPSM plan uses 62.7 GB of memory, 50 GB of which is used for buffering

S. The PARSM plan is similar in all phases except the final merge join

phase, which it completes in 4.77 seconds, bringing the total time to 19.5

seconds.

To summarize, when looking at response time, we find that both the

hash join and streaming merge join plans perform comparably as they return

results in 11-12 seconds, and both need about 25 GB of memory; both

87

outperform the other two plans.

R in ascending join key order

This is the case where both R and S are presorted on the join key. The

results for this experiment are shown in Figure 3.2(b), and a breakdown

per operator is shown in Table 3.2, column 3.2(b). The hash join plan has

a response time of 11.1 seconds, and uses 24.2 GB to store the hash table

for R. The hash join plan cannot take advantage of the sorted R side and

needs to construct a hash table on R. Join keys appear sequentially in S,

and this translates into less memory traffic when probing the hash table

due to caching. The streaming merge join plan (STRSM) is the fastest, as

it only needs to scan the pre-sorted and pre-partitioned inputs in parallel

to produce the join output. The response time of the STRSM plan is

1.98 seconds, and because of its streaming nature the memory size is fixed,

regardless of the input size. We measured memory consumption to be

0.01 GB, primarily for output buffer space. As before, the MPSM and the

PARSM plans are degenerate two-way stream merge join queries.

Overall, when both R and S are sorted on the join key, the preferred

join plan is the streaming merge join which needs minimal memory space

and is 5.60× faster than the hash join.

R in hash table, on join key

Finally, we consider the case where R is stored in a hash table, on the join

key, and S is sorted in ascending join key order. We plot the response time

and memory demand of each query plan in Figure 3.2(c), and a breakdown

per operator is shown in Table 3.2, column 3.2(c).

The hash join plan omits the build phase, as R is already in the hash ta-

ble, and proceeds directly to the probe phase. The hash join plan completes

the query in 6.1 seconds, and needs only 0.01 GB of space for storing meta-

data, the input state and the output buffers of each thread. None of the

88

sort-based plans can take advantage of the hash-partitioned R. As a con-

sequence, the first step in all plans is to repartition R and produce range

partitions. The streaming merge join plan (STRSM) takes 12.0 seconds,

and needs 25 GB for the repartitioning, and the remaining two sort-based

plans are degenerate cases of the streaming merge join query.

To summarize, if R is already stored in a hash table, and S is sorted

on the join key, the preferred join strategy is the hash join, because it can

take advantage of the physical property of R without additional operations.

The hash join query in this case is nearly 2× faster in response time and

only uses minimal memory.

3.5.3 Results from the skewed dataset

We now discuss how the results are affected by the presence of data skew.

For each physical property of R of interest, we plot the response time and

memory consumption of all queries in Figure 3.3, when S is in random

order, and in Figure 3.4 when S is presorted on the join key. The aggregate

memory demand for each query does not change with skew, as the two

datasets are of equal size, however the memory needs of individual threads

are different, depending on the size of the partitions they are assigned to.

Starting from the hash join algorithm, we see that the response time of

the hash join query plans actually improves with skew, similar to what we

observed in Section 2.5 for the single-socket case. Comparing with the uni-

form dataset, we find that response time has dropped to 12.7 seconds from

18.8 seconds, a 1.48× improvement, for Figures 3.3(a) and 3.3(b). We see a

smaller 1.19× benefit, to 9.28 seconds from 11.1 seconds for Figures 3.4(a)

and 3.4(b). When R is already in a hash table, the hash join query plan has

a response time of 7.63 seconds when S is in random order (Figure 3.3(c), a

1.80× improvement), and a response time of 4.19 seconds when S is sorted

(Figure 3.4(c), a 1.43× improvement). Breaking this down further, we see

89

0 20 40 60 80 100 120

Response time (sec)

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(a) R is in random order

0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(b) R is sorted in ascending join key
order

0 20 40 60 80 100 120

Response time (sec)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

G
B

)

HASH

MPSM

STRSM

PARSM

(c) R is in hash table on join key

Figure 3.4: Response time (in seconds) and memory consumption (in GB)
when S is sorted in ascending join key order, skewed dataset

90

that the build phase is nearly unchanged, and all the response time gains

come from the probe phase. This happens because of caching, as now the

most popular items, if accessed frequently enough, will remain cached. This

significantly reduces the number of memory operations needed to complete

the hash join. For example, for the case where both R and S tuples are in

random physical order (Figure 3.3(a)), the number of memory reads per S

tuple has improved 2.79× and now is 0.68, down from 1.90 for the uniform

dataset (Figure 3.1(a)).

Turning our attention to the sort-merge based query plans, we find that

they are negatively impacted by data skew. The MPSM and parallel merge

plans (PARSM) are more resilient, but the streaming merge plan (STRSM)

is affected to a larger degree. For instance, when both the R and S are in

random physical order (Figure 3.3(a)), response time for the STRSM plan

is 84.7 seconds, or 1.35× higher than the 62.7 seconds with the uniform

dataset (Figure 3.1(a)).

The culprit here is the partitioning step that all sort-merge based query

plans rely on. Data skew in this case results in skewed partition sizes, and

as partitions are assigned to specific threads, this results in a skewed work

distribution. This effect can be ameliorated by smart partition boundary

selection [5, 28] and work stealing. However, it cannot be eliminated, as

when a popular data item is in a single partition by itself, it cannot be

further subdivided into smaller partitions. This is an important limitation

if the number of partitions is associated with the maximum degree of par-

allelism one can achieve: In our 80-thread system, the partitions will be

imbalanced if any key occurs more frequently than 1
80

= 1.25% of the time.

As the number of threads in a system increases, the probability of having

an imbalanced work distribution for a given skewed dataset increases. In

comparison, the hash join algorithm accesses a read-only shared hash table

in the probe phase. Any thread that participates in the probe phase can

process any input tuple, resulting in a uniform work distribution regardless

91

Attributes R tuple S tuple
per tuple size |R | size |S |

(N) (bytes) (bytes)
1 8 1280× 220 8 5120× 220

2 16 640× 220 16 2560× 220

4 32 320× 220 32 1280× 220

8 64 160× 220 64 640× 220

16 128 80× 220 128 320× 220

Table 3.3: Properties of the five different datasets we use to explore the
impact of tuple size on query response time. |R | denotes the cardinality of
the dimension table R and |S | denotes the cardinality of the fact table S.
Four S tuples match exactly one tuple in R.

of the dataset and the number of available threads.

To summarize, the hash join is the preferred algorithm when there is

data skew in a primary key-foreign key join. There are two reasons for this.

First, regardless of the dataset and the number of threads, the hash join

algorithm creates a balanced work distribution for all threads during the

probe phase. Partitioning-based algorithms, in comparison, cannot guar-

antee a uniform work distribution, and their response time increases with

higher skew, if a few threads must handle disproportionate amount of work.

Second, frequent accesses to the hottest items effectively “pin” them in the

cache, significantly reducing memory traffic. This causes the response time

of the hash join algorithm to improve as skew increases, similar to what has

already been observed for single-socket systems in Section 2.5.

3.5.4 Impact of wider tuples

The datasets we have experimented with so far have tuples that are only

sixteen bytes wide. While such small tuple sizes are common in data ware-

housing environments that store data in a column-oriented fashion, tuples

may be substantially larger in other settings.

92

We generate five different datasets to explore how different tuple sizes

affect query response time, as shown in Table 3.3. Across all five datasets,

we keep the total amount of processed data constant, and we vary the tuple

size. The dimension table R has N integer attributes r1, r2, . . . , rN , and

the fact table S also has N integer attributes s1, s2, . . . , sN . The join

key is always fixed to eight bytes, and we experiment with tuples as thin

as eight bytes (N=1) and as wide as 128 bytes (N=16). Larger tuple sizes,

such as 128 bytes, capture the case when tuples are stored in a row-oriented

fashion, as is the case when data is retrieved from a transaction processing

engine. Smaller tuple sizes, such as eight bytes, enable additional perfor-

mance optimizations by cleverly using SIMD registers to form a bitonic

merge network for sort-merge join [54].

All datasets model an ad-hoc equijoin between a dimension table R, and

a fact table S. The dimension table R contains the primary key and the

fact table S contains the foreign key. Each R tuple consists of an eight-byte

unique primary key, and the remaining attributes are random integers. The

fact table S has four times as many tuples as R, exactly as in the datasets

described in Section 3.5.1. The first eight-byte attribute of an S tuple is

the foreign key of R, and the remaining attributes are random integers.

The cardinality of the output of the primary-key foreign-key join is the

cardinality of S.

We only consider the case were both the R and S inputs are in random

order. For the dataset where the tuple width is 8 bytes, all sort-based query

plans use an implementation of the SIMD-optimized bitonic sort-merge join

algorithm that Kim et al. [54] describe in Section 5.2 for sorting. For the

experiments in this section, we produce plans corresponding to the following

SQL query:

SELECT SUM(R.r1 + R.r2 + · · · + R.rN

+ S.s1 + S.s2 + · · · + S.sN)

FROM R, S

93

8 16 32 64 128

Tuple size (bytes)

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

R
e
s
p
o
n
s
e
 t
im

e
 (

s
e
c
)

HASH
STRSM
MPSM
PARSM

Figure 3.5: Response time (in seconds) as dataset size remains fixed and
tuple size varies between 8 and 128 bytes. S and R are in random or-
der. When the tuple size is 8 bytes, all sort-based plans (“SM” suffix) use
the SIMD-optimized bitonic sort-merge join algorithm that is described in
Section 5.2 by Kim et al. [23] for sorting.

WHERE R.r1 = S.s1

The query plans that are produced for this query consist of the same

operators as the query plans discussed in Section 3.5.2 and described in

Table 3.1. Furthermore, because the total size of each dataset is the same,

the memory footprint for a given query plan remains nearly unchanged

as the tuple size varies. In the interest of space, we omit the discussion

of the memory footprint of each query plan, and refer the reader to the

proportional differences in memory footprint shown in Figure 3.1(a).

We plot the results in Figure 3.5.4. The horizontal axis corresponds to

different datasets of varying tuple width, which are described in Table 3.3.

The vertical axis shows the response time, in seconds, of each join query.

As in Section 3.5.2, we use “HASH” for the hash-based plan, and the “SM”

94

suffix for the three sort-based query plans: “STRSM” for the plan with

the streaming merge join operator, “MPSM” for the plan containing the

MPSM merge join operator, and “PARSM” for the plan with the parallel

merge join operator.

Starting from the hash-based query plan, we find that the total response

time when processing eight-byte tuples is 29.8 seconds. As tuples get wider,

response time drops down to 5.2 seconds for 128-byte wide tuples. All sort-

based plans have higher response times, starting at 86.9 seconds for the

streaming merge (“STRSM”) join plan with the bitonic sort-merge sorting

for eight-byte tuples. Response time drops to 33.9 seconds for the parallel

merge join operator (“PARSM”) when tuples are 128 bytes wide. Although

the response time for all sort-based plans is similar, the streaming merge

join plan needs twice as much memory space as the parallel merge join and

MPSM join plans due to buffering (see Figure 3.1(a) and Section 3.5.2 for

details.)

The response time drops as tuples get wider primarily due to reduced

memory activity. This is especially pronounced for the hash join plan: 16.0

billion memory operations take place when the dataset consists of eight-

byte tuples, compared with only 2.9 billion memory operations when the

same hash join query plan is executed on 128-byte wide tuples. Performance

improves with wider tuples because of better spatial locality. Intuitively, as

tuples get wider, the hash join query plan based processes more bytes per

hash table lookup, and the sort-based plans process more bytes per tuple

copy (as they sort in-place).

To summarize, regardless of the size of the input tuples, when R and S

are in random join key order, the hash join plan has the shortest response

time. The sort-based query plans cannot close the performance gap even

when using a SIMD-optimized bitonic sort-merge sorting algorithm [54] that

is optimized for eight-byte tuples.

95

3.5.5 Summary of our findings

The hash join is the best join strategy when tuples in the fact table S are

randomly ordered. The hash join outperforms all other algorithms both in

terms of response time, and memory consumption: For the uniform dataset,

the hash-based join plans have from 2.72× to 4.57× lower response time

compared to their fastest sort-based counterpart, while using at least 2.07×

less memory. The response time margin widens even further, in favor of the

hash join, when the larger table S has data skew, as the popular items get

cached and memory traffic is reduced. MPSM is the preferred sort-based

join plan when S is in random order, because it uses half the memory than

the streaming merge join plan (STRSM) and has comparable response time.

The sort-based algorithms only have competitive response times when

the larger table S is presorted on the join key. This improves the perfor-

mance of the hash join as well, albeit to a smaller degree. When both R and

S are pre-sorted on the join key, the streaming merge join plan (STRSM)

has the lowest response time and the smallest memory footprint.

3.6 Concluding remarks

In this chapter we have shown that it is too early to write off the hash join

algorithm when evaluating equijoins in modern main memory DBMSs. We

have carefully characterized the impact of various input physical properties

on the simple hash-based join and three flavors of sort-based equijoin al-

gorithms, and shown that the hash-based join algorithm often outperforms

the current state-of-the-art sort-based methods. We also characterize the

memory footprint that is required to run each join method, as that is an

important practical consideration when building an actual main memory

DBMS. Overall, our results find that there is a place for both hash-based

and sort-based methods in a high performance main memory DBMS.

There are many directions for future work, including expanding this

96

study to more complex queries with multiple joins, considering query opti-

mization techniques for complex queries in main memory DBMSs, consid-

ering non-equijoins, and further investigating methods to improve the basic

join algorithms.

97

Chapter 4

Concurrency control for main

memory databases

A database system optimized for in-memory storage can support much

higher transaction rates than current systems. However, standard con-

currency control methods used today do not scale to the high transaction

rates achievable by such systems. In this chapter we introduce two effi-

cient concurrency control methods specifically designed for main-memory

databases. Both use multiversioning to isolate read-only transactions from

updates but differ in how atomicity is ensured: one is optimistic and one is

pessimistic. To avoid expensive context switching, transactions never block

during normal processing but they may have to wait before commit to en-

sure correct serialization ordering. We also implemented a main-memory

optimized version of single-version locking. Experimental results show that

while single-version locking works well when transactions are short and con-

tention is low performance degrades under more demanding conditions. The

multiversion schemes have higher overhead but are much less sensitive to

hotspots and the presence of long-running transactions.

98

4.1 Introduction

Current database management systems were designed assuming that data

would reside on disk. However, memory prices continue to decline; over the

last 30 years they have been dropping by a factor of 10 every 5 years. The

latest Oracle Exadata X2-8 system ships with 2TB of main memory and

it is likely that we will see commodity servers with multiple terabytes of

main memory within a few years. On such systems the majority of OLTP

databases will fit entirely in memory, and even the largest OLTP databases

will keep the active working set in memory, leaving only cold, infrequently

accessed data on external storage.

A DBMS optimized for in-memory storage and running on a many-

core processor can support very high transaction rates. Efficiently ensuring

isolation between concurrently executing transactions becomes challenging

in such an environment. Current DBMSs typically rely on locking but in a

traditional implementation with a separate lock manager the lock manager

becomes a bottleneck at high transaction rates as shown in experiments by

Johnson et al. [52]. Long read-only transactions are also problematic as

readers may block writers.

In this chapter, we investigate what are the appropriate high-performance

concurrency control mechanisms for memory-resident OLTP workloads. We

found that traditional single-version locking is “fragile”: It works well when

all transactions are short and there are no hotspots but performance de-

grades rapidly under high contention or when the workload includes even a

single long transaction.

Decades of research has shown that multiversion concurrency control

(MVCC) methods are more robust and perform well for a broad range of

workloads. This led us to investigate how to construct MVCC mechanisms

optimized for main memory settings. We designed two MVCC mechanisms:

the first is optimistic and relies on validation, while the second one is pes-

simistic and relies on locking. The two schemes are mutually compatible

99

in the sense that optimistic and pessimistic transactions can be mixed and

access the same database concurrently. We systematically explored and

evaluated these methods, providing an extensive experimental evaluation

of the pros and cons of each approach. The experiments confirmed that

MVCC methods are indeed more robust than single-version locking.

This chapter makes three contributions. First, we propose an optimistic

MVCC method designed specifically for memory resident data. Second, we

redesign two locking-based concurrency control methods, one single-version

and one multiversion, to fully exploit a main-memory setting. Third, we

evaluate the effectiveness of these three different concurrency control meth-

ods for different workloads. The insights from this study are directly ap-

plicable to high-performance main memory databases: single-version lock-

ing performs well only when transactions are short and contention is low;

higher contention or workloads including some long transactions favor the

multiversion methods; and the optimistic method performs better than the

pessimistic method.

The rest of this chapter is organized as follows. Section 4.2 gives a brief

overview of related work. Section 4.3 covers preliminaries of multiversioning

and describes how version visibility and updatability are determined based

on version timestamps. The optimistic scheme and the pessimistic scheme

are described in Sections 4.4 and 4.5, respectively. Section 4.6 reports

performance results, and Section 4.7 offers concluding remarks.

4.2 Related work

Concurrency control has a long and rich history going back to the beginning

of database systems. Several excellent surveys and books on concurrency

control are available [13, 40, 55, 77].

Multiversion concurrency control methods also have a long history. Chap-

ter 5 in [13] describes three multiversioning methods: multiversion times-

100

tamp ordering (MVTO), two-version two-phase locking (2V2PL), and a

multiversion mixed method. 2V2PL uses at most two versions: last com-

mitted and updated uncommitted. They also sketch a generalization that

allows multiple uncommitted versions and readers are allowed to read un-

committed versions. The mixed method uses MVTO for read-only transac-

tions and Strict 2PL for update transactions.

The optimistic approach to concurrency control originated with Kung

and Robinson [56], but they only considered single-version databases. Many

multiversion concurrency control schemes have been proposed [2, 14, 15,

18, 19, 41, 57, 67], but we are aware of only two that take an optimistic

approach: Multiversion Serial Validation (MVSV) by Carey [20, 21] and

Multiversion Parallel Validation (MVPV) by Agrawal et al. [1]. While the

two schemes are optimistic and multiversion, they differ significant from our

scheme. Their isolation level is repeatable read; other isolation levels are

not discussed. MVSV does validation serially so validation quickly becomes

a bottleneck. MVPV does validation in parallel but installing updates after

validation is done serially. In comparison, the only critical section in our

method is acquiring timestamps; everything else is done in parallel. Ac-

quiring a timestamp is a single instruction (an atomic increment) so the

critical section is extremely short.

Snapshot isolation (SI) [12] is a multiversioning scheme used by many

database systems. Several database management systems support snap-

shot isolation to isolate read-only transactions from updaters: Oracle, Post-

greSQL and SQL Server [61] and possibly others. However, SI is not se-

rializable and many papers have considered under what circumstances SI

is serializable or how to make it serializable. Cahill et al. [19] published

a complete and practical solution in 2009. Their technique requires that

transactions check for read-write dependencies. Their implementation uses

a standard lock manager and transactions acquire “locks” and check for

read-write dependencies on every read and write. The “locks” are non-

101

blocking and used only to detect read-write dependencies. Whether their

approach can be implemented efficiently for a main-memory DBMS is an

open question. Techniques such as validating by checking repeatability of

reads and predicates have already been used in the past [17].

Oracle TimesTen [64], IBM’s solidDB [47] and SAP HANA [31] are

three commercially available main-memory DBMSs. TimesTen uses single-

version locking with multiple lock types (shared, exclusive, update) and

multiple granularities (row, table, database). For main-memory tables,

solidDB also uses single-version locking with multiple lock types (shared,

exclusive, update) and two granularities (row, table). For disk-based ta-

bles, solidDB supports both optimistic and pessimistic concurrency control.

HANA has a transaction manager that supports ACID transactions and is

based on multi-version concurrency control. We are not aware of any pub-

lished information on how this multi-version concurrency control method is

implemented, and whether it is based on locking or validation.

Main-memory concurrency control kernels frequently implement a su-

perset of the functionality offered by software transactional memory [73]

implementations, as they add support for durability and application-specific

isolation requirements for each transaction. Hardware transactional mem-

ory [45] has been proposed for better performance, and Tran et al. [78]

have explored how to use hardware transactional memory to execute entire

transactions. The emergance of hardware transactional memory support in

mainstream Intel and IBM processors allows designers to simplify the logic

and the underlying data structures in light of concurrent modifications, and

is an interesting area for future work.

4.3 Multi-version storage engine

A transaction is by definition serializable if its reads and writes logically

occur as of the same time. The simplest and most widely used MVCC

102

method is snapshot isolation (SI). Snapshot isolation does not guarantee

serializability because reads and writes logically occur at different times:

reads occur at the beginning of the transaction and writes at the end.

However, a transaction is serializable if we can guarantee that it would

see exactly the same data if all its reads were repeated at the end of the

transaction.

To ensure that a transaction T is serializable we must guarantee that

the following two properties hold:

Read stability: If T reads some version V1 of a record during its pro-

cessing, we must guarantee that V1 is still the version visible to T as of

the end of the transaction, that is, V1 has not been replaced by another

committed version V2. This can be implemented either by read locking V1

to prevent updates or by validating that V1 has not been updated before

commit. This ensures that nothing has disappeared from the view.

Phantom avoidance: Wemust also guarantee that the transaction’s scans

would not return additional new versions. This can be implemented in two

ways: by locking the scanned part of an index/table or by rescanning to

check for new versions before commit. This ensures that nothing has been

added to the view.

Lower isolation levels are easier to support:

1. For repeatable read, we only need to guarantee read stability.

2. For read committed, no locking or validation is required; always read the

latest committed version.

3. For snapshot isolation, no locking or validation is required; always read

as of the beginning of the transaction.

103

We have implemented a prototype main-memory storage engine. We

begin with a high-level overview of how data is stored, how reads and up-

dates are handled, and how it is determined what versions are visible to a

reader, and that a version can be updated.

4.3.1 Version format

In a multi-version scheme, a record version is visible only to transactions

whose logical read time is within a particular timestamp interval. Storing

the timestamp range of this interval is sufficient when there is no update

activity in the system. However, when a transaction is performing an up-

date, the precise visibility interval is not known. In those cases, we need

to transiently store a unique transaction identifier that corresponds to the

transaction that modified the visibility interval.

In our prototype, we keep track of two additional fields in each database

record to determine whether a version is visible or not to transactions. In

addition to the user-defined columns, each record contains a Begin and an

End field:

Begin A field that stores the earliest logical read time this version is visible

to transactions. This is a 64-bit field and consists of:

1. A flag (1 bit) indicating whether a transaction is currently changing the

beginning of the visibility interval.

2. If the 1-bit flag is set, the remaining 63 bits contain a unique transaction

identifier that corresponds to the transaction changing the visibility of

this version. If the 1-bit flag is unset, the remaining 63 bits store a

timestamp, which indicates the earliest logical read time this version is

visible to transactions.

End A field that stores the latest logical read time this version is visible

to transactions. This is also a 64-bit field and consists of:

104

1. A flag (1 bit) indicating whether a transaction is currently changing the

end of the visibility interval.

2. If the 1-bit flag is set, the remaining 63 bits contain a unique transaction

identifier that corresponds to the transaction changing the visibility of

this version. If the 1-bit flag is unset, the remaining 63 bits store a

timestamp, which indicates the latest logical read time this version is

visible to transactions.

Both fields are 64 bits wide so as to be changed atomically with the

atomic compare-and-swap instruction provided by the underlying hardware.

This eliminates the need to acquire latches to read or change the visibility

of a version and greatly improves concurrency.

4.3.2 Storage and indexing

Our prototype currently supports only hash indexes which are implemented

using lock-free hash tables. A table can have many indexes, and records

are always accessed via an index lookup; there is no direct access to a

record without going through an index. (To scan a table, one simply scans

all buckets of any index on the table.) The techniques presented here are

general and can be applied to ordered indexes implemented by trees or skip

lists. Figure 4.1 shows a simple bank account table containing six versions.

Ignore the numbers (100) in red for now. The table has two (user) columns:

Name and Amount. Each version has a valid time defined by timestamps

stored in the Begin and End fields. A table can have several indexes, each

one with a separate (hash) pointer field. The example table has one index

on the Name column. For simplicity we assume that the hash function just

returns the first letter of the name. Versions that hash to the same bucket

are linked together using the HashPtr field.

Hash bucket J contains four records: three versions for John and one

version for Jane. The order in which the records appear is immaterial.

105

Payload

HashPtrBegin End Name Amount

20 John $10010

John $11020 Tx75

∞ Jane $15015

∞ John $130Tx75

Tx75 Larry $17030

∞ Larry $150Tx75

old

new

old

new

100

100

100

100

Hash index

J

L

Record format

on Name

Figure 4.1: Example account table with one hash index. Transaction 75
has transferred $20 from Larry’s account to John’s account but has not yet
committed.

106

Jane’s single version (Jane, 150) has a valid time from 15 to infinity meaning

that it was created by a transaction that committed at time 15 and it is

still valid. John’s oldest version (John, 100) was valid from time 10 to time

20 when it was updated. The update created a new version (John, 110)

that initially had a valid time of 20 to infinity. We will discuss John’s last

version (John, 130) in a moment.

4.3.3 Reads

Every read specifies a logical (as-of) read time and only versions whose valid

time overlaps the read time are visible to the read; all other versions are

ignored. Different versions of the same record have non-overlapping valid

times so at most one version of a record is visible to a read. A lookup for

John, for example, would be handled by a scan of bucket J that checks every

version in the bucket but returns only the one whose valid time overlaps

the read time.

4.3.4 Updates

Bucket L contains two records which both belong to Larry. Transaction 75

is in the process of transferring $20 from Larry’s account to John’s account.

It has created the new versions for Larry (Larry, 150) and for John (John,

130) and inserted them into the appropriate buckets in the index.

Note that transaction 75 has stored its transaction identifier in the Begin

and End fields of the new and old versions, respectively. A transaction iden-

tifier stored in the End field serves as a write lock and prevents other trans-

actions from updating the same version and it identifies which transaction

has updated it. A transaction identifier stored in the Begin field informs

readers that the version may not yet be committed and it identifies which

transaction owns the version.

Now suppose transaction 75 commits with validation timestamp 100. It

107

then returns to the old and new versions and sets the Begin and End fields,

respectively, to 100. The final values are shown in red below the old and

new versions. The old version (John, 110) now has the valid time 20 to 100

and the new version (John, 130) has a valid time from 100 to infinity.

Every update creates a new version so we need to discard old versions

that are no longer needed to avoid filling up memory. A version can be

discarded when it is no longer visible to any transaction. In our proto-

type, once a version has been identified as garbage, collection is handled

cooperatively by all threads. Although garbage collection is efficient and

fully parallelizable, keeping track of the old versions does consume some

processor resources.

4.3.5 Transaction phases

A transaction can be in one of four states: Active, Preparing, Committed,

or Aborted. Figure 4.2 shows the possible transitions between these states.

A transaction has two unique timestamps: (1) a start timestamp re-

flects the logical time the transaction started executing, and (2) a valida-

tion timestamp reflects the final serialization order of this transaction with

respect to all other transactions in the system. The timestamp is acquired

by atomically reading and incrementing a single, global, and monotonically

increasing counter.

Property 4.1. All timestamps are assigned by atomically reading and in-

crementing a global counter.

Property 4.2. Every transaction has a unique start timestamp ST and a

unique validating timestamp VT, with ST < VT.

A transaction goes through three different phases. We outline the pro-

cessing in each phase only briefly here; it is fleshed out in more detail in

connection with each concurrency control method in Sections 4.4 and 4.5.

108

Transaction gets
start timestamp

Transaction gets
validation timestamp

Log updates and wait for I/O

Active

PreparingAborted

Committed

Figure 4.2: State transitions for each transaction.

1. The transaction is created; it acquires a unique start timestamp and sets

its state to Active.

2. Normal processing phase. The transaction does all its normal pro-

cessing during this phase. A transaction never blocks during this phase.

For update operations, the transaction copies its transaction identifier

into the Begin field of the new versions and into the End field of the

old or deleted versions. If it aborts, it changes its state to Aborted and

skips directly to step 4. When the transaction has completed its nor-

mal processing and requests to commit, it acquires a unique validation

timestamp and switches to the Preparing state.

109

3. Preparation phase. During this phase the transaction determines

whether it can commit or is forced to abort. If it has to abort, it switches

its state to Aborted and continues to the next phase. If it is ready to com-

mit, it writes information about all its new versions and deleted versions

to a redo log record and waits for the log record to reach non-volatile

storage. The transaction then switches its state to Committed.

4. Postprocessing phase. If the transaction has committed, it proceeds

to replace its transaction identifier with its validation timestamp from

both the Begin field of the new versions and from the End field of the

old or deleted versions. If the transaction has aborted, it marks all its

new versions as garbage and discards them immediately.

5. The transaction is terminated. The old versions are assigned to the

garbage collector, which is responsible for discarding them when they

are no longer needed.

4.3.6 Version visibility

A read must specify a logical read time under multiversioning. Only versions

whose valid time overlaps the logical read time are visible to the read. The

read time can be any value between the transaction’s start timestamp and

the current time. Which read time is chosen depends on the concurrency

control method used and the transaction’s isolation level; more about this

in Sections 4.4 and 4.5.

While determining the visibility of a version is straightforward in prin-

ciple, it is more complicated in practice as we do not want a transaction to

block (wait) at any time during normal processing. Recall that a version’s

Begin or End fields can temporarily store a transaction identifier, if the ver-

sion is being updated. If a reader encounters such a version, determining

visibility without blocking requires checking another transaction’s state and

validation timestamp and potentially even restricting the serialization or-

110

der of transactions. (We discuss this mechanism in detail in Section 4.3.8.)

Table 4.1 summarizes the four possible cases.

We now examine each case in turn, beginning from the easiest and most

common case where both fields contain a timestamp. We then discuss the

cases where the Begin or End fields contain transaction identifiers.

Both Begin and End fields contain timestamps

In the absence of concurrent updates, both the Begin and End fields of

a version contain timestamps. In this common case, a simple comparison

suffices to determine whether the version is visible. Let RT denote the log-

ical read time being used by transaction T. To determine whether version

V is visible to T, we check V’s Begin and End fields. If both fields con-

tain timestamps, V is visible to T if and only if RT falls between the two

timestamps.

Begin field contains a transaction identifier

When reading a version shortly after its creation, its Begin field may tran-

siently contain a transaction identifier and not a timestamp. Suppose trans-

action T reads version V and finds that V’s Begin field contains the iden-

tifier of a transaction TB. Whether version V is visible depends on trans-

action TB’s state and TB’s validation timestamp. For example, TB may

have committed already but not yet finalized the Begin fields of its new

versions. If so, V is a committed version with a well-defined Begin times-

tamp. Table 4.2 summarizes the cases that may occur and the action to

take depending on the state of the transaction TB.

If transaction TB is still in the Active state, the version is uncommitted

and thus is not visible to any other transaction. (If T = TB, T can still

see its own updates.) If TB has updated a record multiple times, only the

latest version is visible to it.

111

V
’s
B
e
g
i
n
fi
el
d
is

V
’s
E
n
d
fi
el
d
is

O
u
tc
om

e

T
im

es
ta
m
p

T
im

es
ta
m
p

V
is
v
is
ib
le

if
an

d
on

ly
if
B
e
g
i
n
<

R
T

<
E
n
d
.

T
ra
n
sa
ct
io
n

id
en
ti
fi
er

T
im

es
ta
m
p

V
is
ib
il
it
y
d
ep

en
d
s
on

th
e
st
at
e
of

th
e
tr
an

sa
ct
io
n
w
h
os
e
id
en
ti
fi
er

is
st
or
ed

in
th
e
B
e
g
i
n
fi
el
d
.
(S
ee

T
ab

le
4.
2
fo
r
th
e
an

al
y
si
s.
)
If
n
ee
d
ed
,

p
ro
ce
ed

to
ch
ec
k
w
h
et
h
er

R
T

<
E
n
d
to

d
et
er
m
in
e
v
is
ib
il
it
y.

T
im

es
ta
m
p

T
ra
n
sa
ct
io
n

id
en
ti
fi
er

If
R
T

<
B
e
g
i
n
,
V

is
n
ot

v
is
ib
le
.
O
th
er
w
is
e,

v
is
ib
il
it
y
d
ep

en
d
s
on

th
e
st
at
e
of

th
e
tr
an

sa
ct
io
n
w
h
os
e
id
en
ti
fi
er

is
st
or
ed

in
th
e
E
n
d

fi
el
d
.
(S
ee

T
ab

le
4.
3
fo
r
th
e
an

al
y
si
s.
)

T
ra
n
sa
ct
io
n

id
en
ti
fi
er

T
ra
n
sa
ct
io
n

id
en
ti
fi
er

V
is
ib
il
it
y
d
ep

en
d
s
on

th
e
st
at
e
of

th
e
tr
an

sa
ct
io
n
s
w
h
os
e
id
en
ti
fi
er
s

ar
e
st
or
ed

in
th
e
B
e
g
i
n
an

d
E
n
d
fi
el
d
s.

F
ir
st
,
fo
ll
ow

th
e
ca
se

an
al
y
si
s

sh
ow

n
in

T
ab

le
4.
2.

C
on

ti
n
u
e,

if
n
ee
d
ed
,
w
it
h
th
e
an

al
y
si
s
sh
ow

n
in

T
ab

le
4.
3
to

d
et
er
m
in
e
v
is
ib
il
it
y.

T
ab

le
4.
1:

C
as
e
an

al
y
si
s
of

ac
ti
on

to
ta
ke

w
h
en

tr
an

sa
ct
io
n
T
ch
ec
k
s
v
is
ib
il
it
y
of

ve
rs
io
n
V

as
of

lo
gi
ca
l
re
ad

ti
m
e
R
T
.

112

If TB’s state is Action to take when transaction T checks visibility
of version V.

Active If T = TB, treat V’s Begin field as if it contains a
timestamp of zero when testing for visibility. Oth-
erwise, V is not visible.

Preparing T speculatively reads V using TB’s validation
timestamp as V’s Begin field when testing for vis-
ibility.

Committed Use TB’s validation timestamp as V’s Begin field
to test visibility.

Aborted Ignore V.

Terminated or
TB not found

Check visibility of V again.

Table 4.2: Case analysis of action to take when transaction T checks visi-
bility of version V, and the Begin field of version V contains the identifier
of transaction TB.

If TB is in the Preparing state, is is unknown whether TB will eventu-

ally commit or abort. A safe approach in this situation would be to have

transaction T wait until transaction TB either commits or aborts. How-

ever, we want to avoid all blocking during normal processing, so instead T

speculates that TB will commit. If TB commits, V’s Begin timestamp field

will contain TB’s validation timestamp. T can therefore speculatively use

TB’s validation timestamp as V’s Begin timestamp and continue with the

visibility test. To guarantee serializability, transaction T acquires a commit

dependency on TB, restricting the serialization order of the two transac-

tions. (That is, once T takes a commit dependency on TB, T is allowed to

commit only if TB commits.) Commit dependencies are discussed in more

detail in Section 4.3.8.

If TB is in the Committed state, V’s Begin timestamp field will soon

113

be changed to TB’s validation timestamp. T can therefore proceed and use

TB’s validation timestamp as V’s Begin timestamp to check for visibility.

There is no need to constrain the serialization order by acquiring a commit

dependency in this case, as it is certain that TB has already committed.

If TB is Aborted, this means that transaction T read a version V

that was created by TB, but will soon be discarded as part of TB’s post-

processing. T ignores V in this case.

Finally, there is the rare case where TB’s state is Terminated or TB

can not be found in the system. This occurs only when TB completes all

post-processing in the very short time interval between when T checked V’s

Begin field and when T checked TB’s state. (Although this is a very short

window, the two checks are not atomic.) In this rare case, T simply re-reads

version V’s Begin field and repeats the visibility check.

Property 4.3. A transaction T with a validation timestamp VT has created

a new version V. The new version V is invisible to transactions reading

earlier than VT.

End field contains a transaction identifier

Once it has been determined that version V’s valid time begins before trans-

action T’s read time RT, we proceed to check V’s End field. If it contains

a timestamp, determining visibility is straightforward: V is visible to T if

and only if RT is less than V’s End timestamp. However, if version V is

concurrently being deleted or updated by another transaction TE, the End

field contains the identifier of transaction TE. In this case we have to check

the state and validation timestamp of TE to determine whether V is visible.

Table 4.3 summarizes the various cases and the actions to take, assuming

that we have already determined that V’s begin timestamp is, or will be,

less than RT.

If transaction TE is Active, the version V is uncommitted and not visible

to any other transaction but TE.

114

If TE’s state is Action to take when transaction T checks visibility
of a version V.

Active V is visible only if T 6= TE.

Preparing Let RT be transaction T’s logical read time, and
TS be transaction TE’s validating timestamp. If
RT < TS, V is visible. Otherwise, T speculatively
ignores V.

Committed Use TE’s validation timestamp as V’s End field
when testing for visibility.

Aborted V is visible.

Terminated or
TE not found

Reread V’s End field.

Table 4.3: Case analysis of action to take when transaction T checks visi-
bility of version V, and the End field of version V contains the identifier of
transaction TE.

If TE’s state is Preparing, it has a validation timestamp TS that will

become the End timestamp of V if TE commits. If the logical read time RT

is before TE’s validation timestamp TS, V will be visible regardless whether

TE commits or aborts: If TE commits, it will store its validation timestamp

TS in the End field of V during post-processing. If TE aborts, V will still be

visible, because any transaction that updates V after TE has aborted will

obtain a validation timestamp greater than TS. If the logical read time RT is

after TE’s validation timestamp TS, we have a more complicated situation.

If TE commits, V will not be visible to T; but if TE aborts, V will be visible.

We could handle this by forcing T to wait until TE commits or aborts but

we want to avoid all blocking during normal processing. Instead we allow

T to speculatively ignore V and proceed with its processing: Transaction T

acquires a commit dependency on TE, that is, T is allowed to commit only

if TE commits. (See Section 4.3.8 for details on the commit dependency

115

mechanism.)

The case when TE’s state is Committed is obvious, but the Aborted

case warrants some explanation. If TE has aborted, some other transaction

TO may have sneaked in after T read V’s End field, discovered that TE

has aborted and updated V. However, TO must have updated V’s End

field after T read V, and TO must have been in the Active state. TO’s

validation timestamp would be assigned when switching to the Preparing

state. Thus, TO’s validation timestamp must be later than T’s logical read

time. It follows that it doesn’t matter if a transaction TO “sneaked in” and

updated the version; if TE is in the Aborted state, V is always visible to T.

If TE has terminated or is not found, TE must have finalized V’s val-

idation timestamp since we read the field. So we read the End field again

and try again.

Property 4.4. An uncommitted version is never visible.

4.3.7 Updating a version

Suppose transaction T wants to update a version V. The version V is up-

datable only if it is the latest version, that is, it has an End timestamp field

equal to infinity, or its End field contains the identifier of a transaction TE

that is in the Aborted state. If the state of the transaction TE is Active,

V is the latest committed version but there is a later uncommitted version.

This is a write-write conflict. We follow the first-writer-wins rule and force

transaction T to abort.

Property 4.5. An update or delete to a version is always preceded by a

read to the same version. If transaction T creates new version VN, T has

first read old version V.

Suppose transaction T finds that version V is updatable. It will create

a new version and proceeds to install it in the database. The first step is

116

to atomically compare-and-swap T’s transaction identifier in V’s End field

to prevent other transactions from updating V. If the swap fails because

the End field has changed, T must abort because some other transaction

has sneaked in and updated V before T managed to install its update.

If the swap succeeds, T then connects the new version into all indexes it

participates in. T also saves pointers to the old and new versions; they will

be needed during post-processing.

Property 4.6. A transaction will abort if it attempts to update or delete a

historic version of a record. A historic version has an End field that is either

a timestamp not equal to infinity, or it contains a transaction identifier and

the referenced transaction has committed.

4.3.8 Commit dependencies

When a transaction T1 speculates on the outcome of another transaction

T2, it is necessary to restrict the serialization order to guarantee correct-

ness. We achieve this by keeping track of the commit dependencies between

transactions.

A transaction T1 has a commit dependency on another transaction T2,

if T1 is allowed to commit only if T2 commits. If T2 aborts, T1 must

also abort, so cascading aborts are possible. T1 acquires a commit depen-

dency either by speculatively reading or speculatively ignoring a version,

instead of waiting for T2 to commit. We implement commit dependencies

by a register-and-report approach: T1 registers its dependency with T2

and T2 informs T1 when it has committed or aborted. We track commit

dependencies with three additional variables for each transaction:

1. A counter, CommitDepCounter, that counts how many unresolved com-

mit dependencies a transaction still has. A transaction cannot commit

until this counter is zero.

117

2. A boolean variable, AbortNow, that other transactions can set to force

this transaction to abort.

3. Each transaction T also has a set, CommitDepSet, that stores the iden-

tifiers of the transactions that depend on T.

To take a commit dependency on a transaction T2, T1 increments its

CommitDepCounter and adds its transaction identifier to T2’s CommitDepSet.

If T2 commits, it locates each transaction in its CommitDepSet and decre-

ments their CommitDepCounter. If T2 aborts, it signals the dependent

transactions to also abort by setting their AbortNow flags. T2 takes no

action if a dependent transaction is not found, as this implies that the

dependent has already aborted.

Note that transaction T1 with a commit dependency on T2 may not

have to wait at all — T2 may have committed and disappeared before T1

is ready to commit. In essence, commit dependencies consolidate all waits

into a single wait and postpone the wait to just before commit.

With the commit dependency mechanism, some transactions may have

to wait until the CommitDepCounter is zero before they commit. Waiting

raises a concern of deadlocks. However, deadlocks cannot occur because

a commit dependency is registered only from an Active transaction to a

Preparing transaction. Therefore, it follows that an older transaction (lower

validation timestamp) will never wait on a younger transaction (higher val-

idation timestamp). If one were to construct a wait-for graph, the direction

of edges would always be from a younger transaction to an older transaction,

so cycles are impossible.

4.4 Optimistic transactions

This section describes in more detail the processing performed in the differ-

ent phases for optimistic transactions. We first consider serializable trans-

118

actions and then discuss lower isolation levels. We then prove that the

concurrency control scheme described here admits only 1SR multi-version

histories.

The original paper by Kung and Robinson [56] introduced two validation

methods: backward validation and forward validation. We use backward

validation but optimize it for in-memory storage. Instead of validating a

read set against the write sets of all other transactions, we simply check

whether a version that was read is still visible as of the end of the transac-

tion. A separate write phase is not needed; a transaction’s updates become

visible to other transactions when the transaction changes its state to Com-

mitted.

A serializable optimistic transaction keeps track of its reads, scans and

writes. To this end, a transaction object contains three sets:

1. The ReadSet contains pointers to every version read.

2. The WriteSet contains pointers to versions updated (old and new),

versions deleted (old) and versions inserted (new).

3. The ScanSet stores information needed to repeat every scan.

4.4.1 Normal Processing Phase

Normal processing consists of scanning indexes (see Section 4.3.2) to locate

versions to read, update, or delete. Insertion of an entirely new record

or updating an existing record creates a new version that is added to all

indexes for records of that type.

To do an index scan, a transaction T specifies an index, a predicate P ,

and a logical read time RT . The predicate is a conjunction P = PS ∧ PR

where PS is a search predicate that determines what part of the index to

scan and PR is an optional residual predicate. For a hash index, PS is an

119

equality predicate on columns of the hash key. For an ordered index, PS is

a range predicate on the ordering key of the index.

We now outline the processing during a scan when transaction T runs

at the serializable isolation level. All reads specify the start timestamp of

T as the logical read time.

Start scan When a scan starts, it is registered in T’s ScanSet so T can

check for phantoms during validation. Sufficient information must be recorded

so that the scan can be repeated. In our implementation, we record the in-

dex the scan operates on, and the predicate P .

Check visibility Next we check whether version V is visible to transaction

T as of time RT (see Section 4.3.6). The result of the test may be condi-

tional on another transaction T2 committing. If so, T registers a commit

dependency with T2 (see Section 4.3.8). If the visibility test returns false,

the scan proceeds to the next version.

Check predicate If a version V doesn’t satisfy P , it is ignored and the

scan proceeds. If the scan is a range scan and the index key exceeds the

upper bound of the range, the scan is terminated. If the scan is an equality

predicate for a hash index, the scan is terminated when the end of the hash

chain is encountered.

Read version Transaction T records the read by adding a pointer to ver-

sion V to its ReadSet. The pointer will be used during validation. T can

now read V without any further checks.

Check updatability If transaction T intends to update or delete V, we

must check whether the version is updatable. A visible version is updatable

if its End field equals infinity or it contains a transaction identifier and

the referenced transaction has aborted. Note that speculative updates are

allowed, that is, an uncommitted version can be updated but the transaction

that created it must have completed normal processing.

120

Update version To update version V, transaction T first creates a new

version VN and then atomically sets V’s End field to T’s transaction iden-

tifier. This fails if some other transaction T2 has already set V’s End field.

This is a write-write conflict and T must abort.

In the most likely outcome, T succeeds in setting V’s End field. This serves

as an exclusive write lock on V because it prevents further updates of V.

Transaction T records the update by adding two pointers to its WriteSet:

a pointer to V (old version) and a pointer to VN (new version). These

pointers are used later for three purposes: (1) for logging new versions

during commit, (2) for post-processing after commit or abort, and (3) for

locating old versions when they are no longer needed and can be garbage

collected.

The new version VN is not visible to any other transaction until T switches

to the Preparing state, therefore T can proceed to include VN in all indexes

that the table participates in.

Delete version A delete is an update of V that doesn’t create a new ver-

sion. The End timestamp of V is first checked and then set in the same way

as for updates. If this succeeds, a pointer to V (old version) is added to the

write set and the delete is complete.

When transaction T reaches the end of normal processing, it pre-commits

and enters its preparation phase. Pre-commit simply consists of acquiring

the transaction’s unique validation timestamp and setting the transaction

state to Preparing.

4.4.2 Preparation phase

The preparation phase of an optimistic transaction consists of three steps:

read validation, waiting for commit dependencies, and logging. We discuss

each step in turn.

121

T’s lifetime

V4

V3

V2

V1

Reads Phantoms

Pass

Fail

Pass

Pass

Pass

Fail

Outcome when validating for

validated

V3 is not

validated

V4 is not

start
timestamp

validation
timestamp

Figure 4.3: Possible transaction validation outcomes.

Validation consists of two steps: checking visibility of the versions read

and checking for phantoms. To check visibility, transaction T scans its

ReadSet. For each version read, T checks whether the version is still vis-

ible as of the end of the transaction. To check for phantoms, T walks its

ScanSet and repeats each scan looking for versions that came into existence

during T’s lifetime and are visible as of the end of the transaction. (T

may acquire additional commit dependencies during validation but only if

it speculatively ignores a version.)

Figure 4.3 illustrates the different cases that can occur. It shows the

lifetime of a transaction T, the valid times of versions V1 to V4 of four

122

different records, and the expected outcome of read validation and phantom

detection. We assume that all four versions satisfy the search predicate used

by T and that they were all created and terminated by transactions other

than T.

Version V1 is visible to T both at its start and validation timestamp. If

V1 is included in T’s ReadSet, it passes read validation and also phantom

detection.

Version V2 is visible to T as of its start timestamp but not at the end of

the transaction (that is, as of the validation timestamp). If V2 is included

in T’s ReadSet, it fails read validation. V2 is not a phantom.

Version V3 both began and ended during T’s lifetime, so it is not visible

to T at the start nor at the end of the transaction. It is not included in T’s

ReadSet so it won’t be subject to read validation. V3 is not visible at the

end of T, so V3 is not a phantom.

Version V4 was created during T’s lifetime and is visible at the end of

T, so V4 is a phantom. It is not included in T’s ReadSet because it was

not visible as of T’s start time.

If T fails validation, it is not serializable and must abort. If T passes

validation, it must wait for outstanding commit dependencies to be resolved,

if it has any. More specifically, T can proceed to the post-processing phase

if either its CommitDepCounter is zero or its AbortNow flag is set.

Property 4.7. Let transaction T have a start timestamp ST and a vali-

dating timestamp VT. Every read that transaction T performed during the

Active phase is associated with some logical read time RT, such that ST <

RT < VT. During the Preperation phase, every read will be repeated as of

logical time VT. Transaction T aborts if the read as of logical time RT and

the read as of logical time VT return different versions.

To complete the commit, T scans its WriteSet and writes the new ver-

sions it created to a persistent log. Commit ordering is determined by

transaction validation timestamps, which are included in the log records

123

so that multiple log streams on different devices can be used to ameliorate

bottlenecks due to logging [53]. Deletes are logged by writing a unique key

or, in the worst case, all columns of the deleted version. After the log writes

have been completed and the log record is stored in non-volatile storage, T

sets its transaction state to Committed, thereby signaling the end of this

phase.

4.4.3 Postprocessing

During this phase a committed transaction TC propagates its validating

timestamp to the Begin and End fields of new and old versions, respec-

tively, listed in its WriteSet. An aborted transaction TA can discard all the

new versions it created immediately. In addition, transaction TA attempts

to reset the End fields of any old versions to infinity. However, another

transaction may already have detected that TA aborted, created another

new version and reset the End field of the old version. If so, TA leaves the

End field unchanged.

The transaction then processes all outgoing commit dependencies listed

in its CommitDepSet. If it aborted, it forces the dependent transactions to

also abort by setting their AbortNow flags. If it committed, it decrements

the target transaction’s CommitDepCounter and wakes up the dependent

transaction if the count becomes zero.

Once post-processing is done, other transactions no longer need to refer

to the transaction object. It can be removed from the transaction table but

it will not be discarded entirely; the pointers to old versions in its WriteSet

are needed for garbage collection.

4.4.4 Lower isolation levels

Enforcing lower isolation levels requires less bookkeeping and fewer instruc-

tions. A transaction requiring a higher isolation level bears the full cost

124

of enforcing stronger isolation and does not burden transactions running in

lower isolation levels.

Repeatable read Repeatable read is required to enforce read stability

but not to prevent phantoms. We implement repeatable read simply by

validating a transaction’s ReadSet before commit. As phantom detection

is not required, a transaction’s scans are not recorded. The transaction’s

start timestamp is used as the logical read time.

Read committed Read committed guarantees that only committed ver-

sions are read. We implement read committed by always using the current

time as the logical read time. No validation is required, as uncommitted

versions will never be visible (see Section 4.3.6). A transaction’s reads and

scans are not recorded at this isolation level.

Snapshot isolation Implementing snapshot isolation with a multi-version

storage engine is straightforward: always read as of the start timestamp of

the transaction. No validation is needed, so scans and reads are not tracked.

Read-only transactions If a transaction is known to be read-only, the

best performance is obtained by running it under snapshot isolation or read

committed depending on whether it needs a transaction-consistent view or

not.

4.4.5 Correctness proof

We now prove that the multi-version optimistic scheduler only admits 1SR

multi-version histories. We use the notation from Section 5.2 of [13].

The multi-vesrion serialization graph MV SG(H,≪) is a graph defined

on a multi-version history H and a version total order ≪. Each node in the

MV SG is a committed transaction in H . By definition, the MV SG has an

edge from transaction Ti to transaction Tj (i 6= j 6= k) if and only if:

125

1. Ti writes version Vi and Tj reads version Vi, or

2. Ti writes version Vi and Tk reads version Vj , where Vi ≪ Vj , or

3. Ti reads vesrion Vk and Tj writes version Vj, where Vk ≪ Vj.

We will now prove that there are no cycles in MV SG because every

edge in MV SG is ordered with respect to the validating timestamp order

of the transactions involved. Let E(T) denote the validating timestamp of

transaction T . We prove that an edge Ti → Tj exists in MV SG if and only

if E(Ti) < E(Tj).

1. We start with the first case, where an edge is in MV SG because Ti

writes version Vi and Tj reads version Vi. Suppose Tj read Vi at times-

tamp R(Tj). From Property 4.7, it follows that R(Tj) < E(Tj). If

R(Tj) < E(Ti), it would have been impossible for Tj to read Vi, as it

is uncommitted (Properties 4.3 and 4.4). Therefore E(Ti) ≤ R(Tj), so

E(Ti) < E(Tj).

2. The second case occurs when Ti writes version Vi and Tk reads version

Vj, where Vi ≪ Vj. Suppose Tk read Vj at timestamp R(Tk). As Tk

reads Vj and uncommitted versions are invisible (Property 4.4), it follows

that some transaction Tj created Vj and committed successfully. From

Property 4.7, E(Tj) ≤ R(Tk), otherwise Vj would have not been visible

to Tk as of time R(Tk). Furthermore, from Property 4.7, it follows that

R(Tj) < E(Tj). There exists no version Vk such that Vi ≪ Vk ≪ Vj ,

otherwise Tj would have aborted during the update (Property 4.6). Since

Tj wrote Vj, that implies that Tj read Vi (Property 4.5), hence E(Ti) ≤

R(Tj). Therefore, E(Ti) < E(Tj).

3. The third case occurs when Ti reads vesrion Vk and Tj writes version

Vj, where Vk ≪ Vj. Suppose Ti read Vk at R(Ti). From Property 4.7,

R(Ti) < E(Ti). Suppose that E(Tj) < E(Ti). This ordering is impossible

126

if Tj and Ti are committed transactions from Property 4.7: Transaction

Ti would validate whether Vk is still visible as of E(Ti). Tj has committed

and Vk ≪ Vj , therefore Vk is no longer visible as of E(Ti) and valida-

tion would fail. Ti would abort and would never be a node in MV SG.

Therefore, E(Ti) < E(Tj).

We have shown that an edge Ti → Tj exists in MV SG if and only

if E(Ti) < E(Tj), where E(T) is the validating timestamp of committed

transaction T. As validating timestamps are integers that are assigned from

a monotonically increasing counter (Property 4.1), edges in MSV G cannot

be involved in a cycle. Hence, the multi-version histories accepted by our

multi-version optimistic concurrency control scheduler are 1SR.

4.5 Pessimistic transactions

An optimistic transaction running at a higher isolation level may find its

reads being invalidated repeatedly from short transactions. This can cause

large read-mostly transactions to starve. Instead of going through a val-

idation phase at the end, a transaction can choose to be pessimistic and

acquire read locks to prevent its transactional reads from being invalidated.

This section describes our design for multiversion locking optimized for

main-memory databases.

We first describe the additional data structures and lock types needed

to efficiently implement multiversion locking. We then summarize the pro-

cessing phases a pessimistic transaction goes through, and highlight the

differences compared to the optimistic scheme.

A serializable pessimistic transaction must keep track of which versions

it read, which hash buckets it scanned, and its new and old versions. To

this end, the transaction maintains three sets:

1. The ReadSet contains pointers to versions read-locked by the transac-

127

tion.

2. TheBucketLockSet contains pointers to hash buckets visited and locked

by the transaction.

3. The WriteSet contains references to versions updated (old and new),

versions deleted (old) and versions inserted (new).

4.5.1 Lock types

We use two types of locks: record locks and bucket locks. Record locks

are placed on versions to ensure read stability. Bucket locks are placed

on (hash) buckets to prevent phantoms. The name reflects their use for

hash indexes in our prototype but range locks for ordered indexes can be

implemented in the same way.

Record locks

Updates or deletes can only be applied to the latest version of a record;

older versions cannot be further updated. Thus, locks are required only for

the latest version of a record; never for older versions. So what’s needed is

an efficient many-readers-single-writer lock for this case.

We do not want to store record locks in a separate table — it’s too

slow. Instead we embed record locks in the End field of versions so no extra

space is required. In our prototype, the End field of a version is 64 bits.

As described earlier, this field stores either a timestamp or a transaction

identifier with one bit indicating what the field contains. We change how

we use this field to make room for a record lock.

1. ContentType (1 bit): indicates the content type of the remaining 63 bits.

2. Timestamp (63 bits): when ContentType is zero.

3. RecordLock (63 bits): when ContentType is one.

128

3.1. NoMoreReadLocks (1 bit): a flag set when no further read locks

are accepted. Used to prevent starvation.

3.2. ReadLockCount (8 bits): number of read locks.

3.3. WriteLock (54 bits): identifier of the transaction holding a write

lock on this version or infinity (max value).

We do not explicitly keep track of which transactions have a version

read locked. Each transaction records its ReadSet so we can find out by

checking the ReadSets of all current transactions. This is only needed for

deadlock detection which occurs infrequently.

A transaction acquires a read lock on a version V by atomically incre-

menting V’s ReadLockCount. No further read locks can be acquired if the

counter has reached its max value (255) or the NoMoreReadlocks flag is set.

If so, the transaction aborts.

A transaction write locks a version V by atomically copying its trans-

action identifier into the WriteLock field. This action both write locks the

version and identifies who holds the write lock.

Bucket Locks (Range Locks)

Bucket locks are used only by serializable transactions to prevent phantoms.

When a transaction TS begins a scan of a hash bucket, it locks the bucket.

Multiple transactions can have a bucket locked. A bucket lock consists of

the following two fields:

1. LockCount: number of locks on this bucket.

2. LockList: list of (serializable) transactions holding a lock on this bucket.

The current implementation stores the LockCount in the hash bucket

to be able to check quickly whether the bucket is locked. LockLists are

implemented as arrays stored in a separate hash table with the bucket

address as the key.

129

To acquire a lock on a bucket B, a transaction TS increments B’s Lock-

Count, locates B’s LockList, and adds its transaction Id to the list. To

release the lock it deletes its transaction identifier from B’s LockList and

decrements the LockCount.

Range locks in an ordered index can be implemented in the same way.

If the index is implemented by a tree structure, a lock on a node locks

the subtree rooted at that node. If the index is implemented by skip lists,

locking a tower locks the range from that tower to the next tower of the

same height.

4.5.2 Eager Updates, Wait-For Dependencies

In a traditional implementation of multiversion locking, an update transac-

tion TU would block if it attempts to update or delete a read locked version

or attempts to insert or update a version in a locked bucket. This may lead

to frequent blocking and thread switching. A thread switch is expensive,

costing several thousand instructions. In a main-memory system, just a few

thread switches can add significantly to the cost of executing a transaction.

To avoid blocking we allow a transaction TU to eagerly update or delete

a read locked version V but, to ensure correction serialization order, TU

cannot precommit until all read locks on V have been released. Similarly,

a transaction TR can acquire a read lock on a version that is already write

locked by another transaction TU. If so, TU cannot precommit until TR

has released its lock.

Note that an eager update or delete is not speculative because it doesn’t

matter whether TR commits or aborts; it just has to complete and release its

read lock. The same applies to locked buckets. Suppose a bucket B is locked

by two (serializable) transactions TS1 and TS2. An update transaction TU

is allowed to insert a new version into B but it is not allowed to precommit

before TS1 and TS2 have completed and released their bucket locks.

We enforce correct serialization order by wait-for dependencies. A wait-

130

for dependency forces an update transaction TU to wait before it can ac-

quire a validation timestamp and begin commit processing. There are two

flavors of wait-for dependencies, read lock dependencies and bucket lock

dependencies that differ in what event they wait on.

A transaction T needs to keep track of both incoming and outgoing wait-

for dependencies. T has an incoming dependency if it waits on some other

transaction and an outgoing dependency if some other transaction waits on

it. To track wait-for dependencies, the following fields are included in each

transaction object.

1. WaitForCounter: indicates how many incoming dependencies the trans-

action is waiting for.

2. NoMoreWaitFors: when set the transaction does not allow additional

incoming dependencies. Used to prevent starvation by incoming depen-

dencies continuously being added.

3. WaitingTxnList: Tracks outgoing wait-for dependencies by storing the

identifiers of transactions waiting on this transaction to complete.

Read lock dependencies

A transaction TU that updated or deleted a version V has a wait-for de-

pendency on V as long as V is read locked. TU is not allowed to acquire

a validation timestamp and begin commit processing unless V’s ReadLock-

Count is zero.

When a transaction TU updates or deletes a version V, it acquires a

write lock on V by copying its transaction identifier into the WriteLock field.

If V’s ReadLockCount is greater than zero, TU takes a wait-for dependency

on V simply by incrementing its WaitForCounter.

TU may also acquire a wait-for dependency on V by another transaction

TR taking a read lock on V. A transaction TR that wants to read a version V

131

must first acquire a read lock on V by incrementing V’s ReadLockCount. If

V’s NoMoreReadLocks flag is set or ReadLockCount is at max already, lock

acquisition fails and TR aborts. Otherwise, if V is not write locked or V’s

ReadLockCount is greater than zero, TR increments V’s ReadLockCount

and proceeds. However, if V is write locked by a transaction TU and this

is the first read lock on V (V’s ReadLockCount is zero), TR must force TU

to wait on V. TR checks TU’s NoMoreWaitFors flag. If it is set, TU cannot

install the wait-for dependency and aborts. Otherwise everything is in order

and TR acquires the read lock by incrementing Vs’ ReadLockCounter and

installs the wait-for dependency by incrementing TU’s WaitForCounter.

When a transaction TR releases a read lock on a version V, it may also

need to release a wait-for dependency. If V is not write locked, TR simply

decrements V’s ReadLockCounter and proceeds. The same applies if V is

write locked and V’s ReadLockCounter is greater than one. However, if V

is write locked by a transaction TU and V’s ReadLockCounter is one, TR

is about to release the last read lock on V and therefore must also release

TU’s wait-for dependency on V. TR atomically sets V’s ReadLockCounter

to zero and V’s NoMoreReadLocks to true. If this succeeds, TR locates TU

and decrements TU’s WaitForCounter.

Setting the NoMoreReadLocks flag before releasing the wait-for depen-

dency is necessary because this may be TU’s last wait-for dependency. If

so, TU is free to acquire a validation timestamp and being its commit pro-

cessing. In that case, TU’s commit cannot be further postponed by taking

out a read lock on V. In other words, further read locks on V would have

no effect.

Bucket lock dependencies

A serializable transaction TS acquires a lock on a bucket B by incrementing

B’s LockCounter and adding its transaction identifier to B’s LockList. The

purpose of TR’s bucket lock is not to disallow new versions from being

132

added to B but to prevent them from becoming visible to TR. That is,

another transaction TU can add a version to B but, if it does, then TU

cannot precommit until TS has completed its processing and released its

lock on B. This is enforced by TU obtaining a wait-for dependency on TS.

TU can acquire this type of dependency either by acquiring one itself

or by having one imposed by TS. We discuss each case.

Suppose that, as a result of an update or insert, TU is about to add a

new version V to a bucket B. TU checks whether B has any bucket locks.

If it does, TU takes out a wait-for dependency on every transaction TS in

B’s LockList by adding its own transaction identifier to TS’s WaitForList

and incrementing its own WaitForCounter. If TU’s NoMoreWaitFors flag

is set, TU can’t take out the dependency and aborts.

Suppose a serializable transaction TS is scanning a bucket B and en-

counters a version V that satisfies TS’s search predicate but the version is

not visible to TS, that is, V is write locked by a transaction TU that is

still active. If TU commits before TS, V becomes a phantom to TS. To

prevent this from happening, TS registers a wait-for dependency on TU’s

behalf by adding TU’s transaction identifier to its own WaitingTxnList and

incrementing TU’s WaitForCounter. If TU’s NoMoreWaitFors flag is set,

TS can’t impose the dependency and aborts.

When a serializable transaction TS has precommitted and acquired its

validation timestamp, it releases its outgoing wait-for dependencies. It

scans its WatingTxnList and, for each transaction T found, decrements T’s

WaitForCounter.

4.5.3 Processing phases

This section describes how locking affects the processing done in the differ-

ent phases of a transaction.

133

Normal processing phase

Recall that normal processing consists of scanning indexes to select record

versions to read, update, or delete. An insertion or update creates a new

version that has to be added to all indexes for records of that type.

We now outline what a pessimistic transaction T does differently than an

optimistic transaction during a scan and how this depends on T’s isolation

level. For snapshot isolation, the logical read time is always the transaction

start timestamp. For all other isolation levels, it is the current time which

has the effect that the read sees the latest version of a record.

Start scan If T is a serializable transaction, it takes out a bucket lock on

B to prevent phantoms and records the lock in its BucketLockSet. Other

isolation levels do not take out a bucket lock.

Check predicate This phase is the same as for optimistic transactions.

(Refer to Section 4.4.1 for details.)

Check visibility This is done in the same way as for optimistic transac-

tion, including taking out commit dependencies as needed. If a version V

is not visible, it is ignored and the scan continues for all isolations levels

except serializable. If T is serializable and V is write locked by a transaction

TU that is still active, V is a potential phantom so T forces TU to delay

its precommit by imposing a wait-for dependency on TU.

Read version If T runs under serializable or repeatable read and V is a

latest version, T attempts to acquire a read lock on V. If T can’t acquire

the read lock, it aborts. If T runs under a lower isolation level or V is not

a latest version, no read lock is required.

Check updatability This phase is the same as for optimistic transactions.

(Refer to Section 4.4.1 for details.)

134

Update version As for optimistic transactions, T creates a new version

N, sets V’s WriteLock and, if V was read locked, takes out a wait-for de-

pendency on V by incrementing its own WaitForCounter. T then proceeds

to add N to all indexes it participates in. If T adds N to a locked index

bucket B, it takes out wait-for dependencies on all (serializable) transactions

holding locks on B.

Delete version A delete is essentially an update of V that doesn’t create

a new version. T sets V’s WriteLock and if V was read locked, takes out a

wait-for dependency on V by incrementing its own WaitForCounter.

When transaction T reaches the end of normal processing, it releases

its read locks and its bucket locks, if any. If it has outstanding wait-for

dependencies (its WaitForCounter is greater than zero), it waits. Once

its WaitForCounter is zero, T precommits, that is, acquires a validation

timestamp and sets its state to Validating.

Preparation phase

Pessimistic transactions require no validation that’s taken care of by locks.

However, a pessimistic transaction T may still have outstanding commit

dependencies when reaching this point. If so, T waits until they have been

resolved and then proceeds to write to the log and commit. If a commit

dependency fails, T aborts.

Postprocessing phase

Postprocessing is the same as for optimistic transactions. Note that there

is no need to explicitly release write locks; this is automatically done when

the transaction updates Begin and End fields.

135

4.5.4 Deadlock detection

Commit dependencies are only taken on transactions that have already pre-

committed and are completing validation. As discussed earlier Section 4.3.8

commit dependencies cannot cause or be involved in a deadlock.

Wait-for dependencies, however, can cause deadlocks. To detect dead-

locks we build a standard wait-for graph by analyzing the wait-for depen-

dencies of all transactions that are currently blocked. Once the wait-for

graph has been built, any algorithm for finding cycles in graphs can be

used. Our prototype uses Tarjan’s algorithm [75] for finding strongly con-

nected components.

A wait-for graph is a directed graph with transactions as nodes and

waits-for relationships as edges. There is an edge from transaction T2 to

transaction T1 if T2 is waiting for T1 to complete. The graph is constructed

in three steps.

Create nodes Scan the transaction table and for each transaction T found,

create a node N(T) if T has completed its normal processing and is blocked

because of wait-for dependencies.

Create egdes from explicit dependencies Wait-for dependencies caused

by bucket locks are represented explicitly in WaitingTxnLists. For each

transaction T1 in the graph and each transaction T2 in T1’s WaitingTxn-

List, add an edge from T2 to T1.

Create edges from implicit dependencies A wait-for dependency on a

read-locked version V is an implicit representation of wait-for dependencies

on all transaction holding read locks on V. We can find out which transac-

tions hold read locks on V by checking transaction read sets. Edges from

implicit dependencies can be constructed as follows. For each transaction

T1 in the graph and each version V in T1’s ReadLockSet: if V is write

locked by a transaction T2 and T2 is in the graph, add an edge from T2 to

T1.

136

While the graph is being constructed normal processing continues so

wait-for dependencies may be created and resolved and transactions may

become blocked or unblocked. Hence, the final graph obtained may be

imprecise, that is, it may differ from the graph that would be obtained if

normal processing stopped. But this doesn’t matter because if there truly

is a deadlock neither the nodes nor the edges involved in the deadlock can

disappear while the graph is being constructed. There is a small chance of

detecting a false deadlock but this is handled by verifying that the transac-

tions participating in the deadlock are still blocked and the edges are still

covered by unresolved wait-for dependencies.

4.5.5 Correctness proof

The multi-version locking scheme is a MV2PL scheduler. Section 5.5.2 of

[79] describes MV2PL in detail and proves it only admits 1SR multi-version

histories. In our implementation, having the NoMoreReadLocks bit set on

the latest version of a record (see Section 4.5.2) is equivalent to holding a

certify (commit) lock on a data item in MV2PL.

4.5.6 Peaceful coexistence

An interesting property of our design is that optimistic and pessimistic

transactions can be mixed. The change required to allow optimistic transac-

tions to coexist with pessimistic transactions is straightforward: optimistic

update transactions must honor read locks and bucket locks. Making an

optimistic transaction T honor read locks and bucket locks requires the

following changes:

1. When T write locks a version V, it uses only a 54-bit transaction identifier

and doesn’t overwrite read locks.

137

2. When T updates or deletes a version V that is read locked, it takes a

wait-for dependency on V.

3. When T inserts a new version into a bucket B, it checks for bucket locks

and takes out wait-for dependencies as needed.

4.6 Experimental results

Our prototype storage engine implements both the optimistic and the pes-

simistic scheme. We also implemented a single-version storage engine with

locking for concurrency control. The implementation is optimized for main-

memory databases and does not use a central lock manager, as this can be-

come a bottleneck [52]. Instead, we embed a lock table in every index and

assign each hash key to a lock in this partitioned lock table. A lock covers

all records with the same hash key which automatically protects against

phantoms. We use timeouts to detect and break deadlocks.

The experiments were run on a two-socket Intel Xeon X5650 @ 2.67 GHz

(Nehalem) that has six cores per socket. HyperThreading was enabled. The

system has 48 GB of memory, 12 MB L3 cache per socket, 256 KB L2 cache

per core, and two separate 32 KB L1-I and L1-D caches per core. This is

a NUMA system and memory latency is asymmetric: accessing memory on

the remote socket is approximately 30% slower than accessing local memory.

We size hash tables appropriately so there are no collisions. The operating

system is Windows Server 2008 R2.

The I/O bandwidth required for logging is moderate: Each update pro-

duces a log record that stores the difference between the old and new ver-

sions, plus 8 bytes of metadata. Even with millions of updates per second,

the I/O bandwidth required is within what even a single desktop hard drive

can deliver. However, logging each transaction individually involves a very

high number of I/O operations. For our experiments, each transaction gen-

erates log records but these are asynchronously written to durable storage;

138

transactions do not wait for log I/O to complete. This choice allows us to fo-

cus on the effect of concurrency control. Asynchronous logging allows us to

submit log records in batches (group commit), greatly reducing the number

of I/O operations for our experiments. The emergence of fast non-volatile

storage that can sustain a very high number of I/O operations promises to

ameliorate this problem in the future.

Traditional disk-based transaction processing systems require hundreds

of concurrently active transactions to achieve maximum throughput. This

is to give the system useful work to do while waiting for disk I/O. Our

main-memory engine does not wait for disk I/O, so there is no need to

over-provision threads. We observed that the CPU is fully utilized when the

multi-programming level equals the number of hardware threads; allowing

more concurrent transactions causes throughput to drop. We therefore

limited the number of concurrently active transactions to be at most 24,

which matches the number of threads our machine supports.

We experiment with three CC schemes: the single-version locking engine

(labeled “1V” the multi-version engine when transactions run optimistically

(“MV/O”) and the multi-version engine where transactions run pessimisti-

cally (“MV/L”).

4.6.1 Homogeneous workload

We first show results from a parameterized artificial workload. By varying

the workload parameters we can systematically explore how sensitive the

different schemes are to workload characteristics. We focus on short update

transactions which are common for OLTP workloads. The workload consists

of a single transaction type that performs R reads and W writes against a

table of N records with a unique key. Each row is 24 bytes, and reads and

writes are uniformly and randomly scattered over the N records.

The memory footprint of the database differs for each concurrency con-

trol scheme. In 1V, each row consumes 24 bytes (payload) plus 8 bytes for

139

2 4 6 8 10 12 14 16 18 20 22 24

Threads

0
.0

0
.5

1
.0

1
.5

2
.0

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
 t

x
s
/s

e
c
) 1V

MV/O
MV/L

Figure 4.4: Scalability under low contention.

the “next” pointer of the hash table. Both MV schemes additionally use

16 bytes to store the Begin and End fields (cf. Figure 1), but the total

consumption depends on the average number of versions required by the

workload. Comparing the two MV schemes, MV/L has the biggest memory

footprint, due to the additional overhead of maintaining a bucket lock table.

Scalability (Read Committed)

We first show how transaction throughput scales with increasing multipro-

gramming level. For this experiment each transaction performs 10 reads

and 2 writes (R=10 and W=2) against a table with N=10,000,000 rows.

The isolation level is Read Committed.

Figure 4.4 plots transaction throughput (y-axis) as the multiprogram-

ming level increases (x-axis). Under low contention, throughput for all three

schemes scales linearly up to six threads. After six threads, we see the effect

140

of the higher access latency as the data is spread among two NUMA nodes,

and beyond twelve threads we see the effect of HyperThreading.

For the 1V scheme, HyperThreading causes the speed-up rate to drop

but the system still continues to scale linearly, reaching a maximum of

over 2M transactions/sec. The multiversion schemes have lower throughput

because of the overhead of version management and garbage collection.

Creating a new version for every update and cleaning out old versions that

are no longer needed is obviously more expensive than updating in place.

Comparing the two multiversion schemes, MV/L has 30% lower perfor-

mance than MV/O. This is caused by extra writes for tracking dependencies

and locks, which cause increased memory traffic. It takes MV/L 20% more

cycles to execute the same number of instructions and the additional control

logic translates into 10% more instructions per transaction.

Scaling under contention (Read Committed)

Records that are updated very frequently (hotspots) pose a problem for

all CC schemes. In locking schemes, high contention causes transactions

to wait because of lock conflicts and deadlocks. In optimistic schemes,

hotspots result in validation failures and write-write conflicts, causing high

abort rates and wasted work. At the hardware level, some data items are

accessed so frequently that they practically reside in the private L1 or L2

caches of each core. This stresses the hardware to the limits, as it triggers

very high core-to-core traffic to keep the caches coherent.

We simulate a hotspot by running the same R=10 and W=2 transaction

workload from Section 5.1.1 on a very small table with just N=1,000 rows.

Transactions run under Read Committed. Figure 4.5 shows the through-

put under high contention. Even in this admittedly extreme scenario, all

schemes achieve a throughput of over a million transactions per second,

with MV/O slightly ahead of both locking schemes. 1V achieves its highest

throughput at six threads, then drops and stays flat after 8 threads.

141

2 4 6 8 10 12 14 16 18 20 22 24

Threads

0
.0

0
.5

1
.0

1
.5

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
 t

x
s
/s

e
c
)

1V
MV/O
MV/L

Figure 4.5: Scalability under high contention.

Higher isolation levels

The experiments in the previous section ran under Read Committed isola-

tion level, which is the default isolation level in many commercial database

engines [46, 61], as it prevents dirty reads and offers high concurrency.

Higher isolation levels prevent more anomalies but reduce throughput. In

this experiment, we use the same workload from Section 4.6.1, we fix the

multiprogramming level to 24 and we change the isolation level.

In Table 4.4, we report the transaction throughput from each scheme

and isolation level. We also report the throughput drop as a percentage of

the throughput when running under the Read Committed isolation level.

The overhead for Repeatable Read for both locking schemes is very

small, less than 2%. MV/O needs to repeat the reads at the end of the

transaction, and this causes an 8% drop in throughput. For Serializable,

the 1V scheme protects the hash key with a lock, and this guarantees phan-

142

Read Committed Repeatable Read Serializable

Throughput Throughput % drop Throughput % drop
(tx/sec) (tx/sec) vs RC (tx/sec) vs RC

1V 2,080,492 2,042,540 1.8% 2,042,571 1.8%
MV/L 974,512 963,042 1.2% 877,338 10.0%
MV/O 1,387,140 1,272,289 8.3% 1,120,722 19.2%

Table 4.4: Throughput at higher isolation levels, and percentage drop com-
pared to Read Committed (RC).

tom protection with very low overhead (2%). Both MV schemes achieve

serializability at a cost of 10%- 19% lower throughput: MV/L acquires

read locks and bucket locks, while MV/O has to repeat each scan during

validation. Under MV/O, however, a transaction requesting a higher iso-

lation level bears the full cost of enforcing the higher isolation. This is not

the case for locking schemes.

4.6.2 Heterogeneous workload

The workload used in the previous section represents an extreme update-

heavy scenario. In this section we fix the multiprogramming level to 24 and

we explore the impact of adding read-only transactions in the workload mix.

Impact of short read transactions

In this experiment we change the ratio of read and update transactions.

There are two transaction types running under Read Committed isolation:

the update transaction performs 10 reads and 2 writes (R=10 and W=2),

while the read-only transaction performs 10 reads (R=10 and W=0).

Figure 4.6 shows throughput (y-axis) as the ratio of read-only transac-

tions varies in the workload (x-axis) in a table with 10,000,000 rows. The

143

0% 20% 40% 60% 80% 100%

Read−only transactions in workload (%)

0
1

2
3

4

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
 t

x
s
/s

e
c
) 1V

MV/O
MV/L

Figure 4.6: Impact of read-only transactions on throughput (low con-
tention).

leftmost point (x=0%) reflects the performance of the update-only work-

load of Section 4.6.1 at 24 threads. As we add read-only transactions to

the mix, the performance gap between all schemes closes. This is primarily

because the update activity is reduced, reducing the overhead of garbage

collection.

The MV schemes outperform 1V when most transactions are read-only.

When a transaction is read-only, the two MV schemes behave identically:

transactions read a consistent snapshot and do not need to do any locking or

validation. In comparison, 1V has to acquire and release short read locks for

cursor stability even for read-only transactions which impacts performance.

In Figure 4.7 we repeat the same experiment but simulate a hotspot

by using a table of 1,000 rows. The leftmost point (x=0%) again reflects

the performance of the update-only workload of Section 5.1.12 under high

contention at 24 threads. The MVCC schemes have a clear advantage at

144

0% 20% 40% 60% 80% 100%

Read−only transactions in workload (%)

0
1

2
3

4
5

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
 t

x
s
/s

e
c
) 1V

MV/O
MV/L

Figure 4.7: Impact of read-only transactions on throughput (high con-
tention).

high contention, as snapshot isolation prevents read-only transactions from

interfering with writers. When 80% of the transactions are read-only, the

MVCC schemes achieve 63% and 73% higher throughput than 1V.

Impact of long read transactions

Not all transactions are short in OLTP systems. Users often need to run

operational reporting queries on the live system. These are long read-only

transactions that may touch a substantial part of the database. The pres-

ence of a few long-running queries should not severely affect the throughput

of “normal” OLTP transactions.

This experiment investigates how the three concurrency control methods

perform in this scenario. We use a table with 10,000,000 rows and fix the

number of concurrently active transactions to be 24. The workload consists

of two transaction types: (a) Long, transactionally consistent (Serializable),

145

0 2 4 6 8 10 12 14 16 18 20 22 24

Active long read transactions

0
.0

0
.5

1
.0

1
.5

2
.0

U
p
d

a
te

 t
h
ro

u
g
h
p
u
t

(m
ill

io
n
 t

x
s
/s

e
c
)

1V
MV/O
MV/L

Figure 4.8: Update throughput with long read transactions. Each update
transaction performs ten reads and two updates.

read-only queries that touch 10% of the table (R=1,000,000 and W=0) and

(b) Short update transactions with R=10 and W=2.

Figures 4.8 and 4.9 show update and read throughput (y-axis) as we

vary the number of concurrent long read-only transactions in the system

(x-axis). At the leftmost point (x=0) all transactions are short update

transactions, while at the rightmost point (x=24) all transactions are read-

only. At x=6, for example, there are 6 readonly and 24-6=18 short update

transactions running concurrently.

Looking at the update throughput in Figure 7, we can see that 1V

is twice as fast as the MV schemes when all transactions are short up-

date transactions, at x=0. (This is consistent with our findings from the

experiments with the homogeneous workload in Section 4.6.1.) However

the picture changes completely once a single long read-only transaction is

present in the system. At x=1, update throughput drops 75% for the single

146

0 2 4 6 8 10 12 14 16 18 20 22 24

Active long read transactions

0
1
0

2
0

3
0

4
0

5
0

6
0

R
e
a
d
 t

h
ro

u
g
h
p
u
t

(t
x
s
/s

e
c
) 1V

MV/O
MV/L

Figure 4.9: Read throughput with long read transactions. Each long read
transaction performs one million reads (10% of the database).

version engine. In contrast, update throughput drops only 5% for the MV

schemes, making MV twice as fast as 1V. The performance gap grows as

we allow more read-only transactions. When 50% of the active transactions

are long readers, at x=12, MV has 80X higher update throughput than 1V.

In terms of read throughput (Figure 4.9), both MV schemes consistently

outperform 1V.

4.6.3 TATP results

The workloads used in the previous sections allowed us to highlight fun-

damental differences between the three concurrency control mechanisms.

However, real applications have higher demands than randomly reading

and updating values in a single index. We conclude our experimental eval-

uation by running a benchmark that models a simple but realistic OLTP

147

Transactions
per second

1V 4,220,119
MV/L 3,129,816
MV/O 3,121,494

Table 4.5: TATP results.

application.

The TATP benchmark [76] simulates a telecommunications application.

The database consists of four tables with two indexes on each table to speed

up lookups. The benchmark runs a random mix of seven short transactions;

each transaction performs less than 5 operations on average. 80% of the

transactions executed only query the database, while 16% update, 2% in-

sert, and 2% delete items. We sized the database for 20 million subscribers

and generated keys using the non-uniform distribution that is specified in

the benchmark. All transactions run under Read Committed.

Table 4.5 shows the number of committed transactions per second for

each scheme. Our concurrency control mechanisms can sustain a through-

put of several millions of transaction per second on a low-end server ma-

chine. This is an order of magnitude higher than previously published

TATP numbers for disk-based systems [52] or main memory systems [50].

4.7 Concluding remarks

In this chapter we investigated concurrency control mechanisms optimized

for main memory databases. The known shortcomings of traditional locking

led us to consider solutions based on multiversioning. We designed and

implemented two multi-version concurrency control methods, one optimistic

using validation and one pessimistic using locking. For comparison purposes

148

we also implemented a variant of single-version locking optimized for main

memory databases. We then experimentally evaluated the performance of

the three methods. Several conclusions can be drawn from the experimental

results.

• Single-version locking can be implemented efficiently and without lock

acquisition becoming a bottleneck.

• Single-version locking is fragile; it performs well when transactions are

short and contention is low but suffers under more demanding conditions.

• The multi-version concurrency control schemes have higher overhead but

are more resilient, retaining good throughput even in the presence of

hotspots and long read-only transactions.

• The optimistic multi-versioning concurrency control scheme consistently

achieves higher throughput than the pessimistic scheme.

149

Chapter 5

Conclusions and future work

This dissertation makes three contributions to high-performance main mem-

ory database management systems. First, in Chapter 2 we introduced a

simple non-partitioned hash join variant that has comparable performance

with much more sophisticated hash join methods. A feature of particu-

lar significance is that the performance of the non-partitioned hash join

improves with higher skew. This simple algorithm performs so well primar-

ily because of the introduction of hardware multi-threading in new CPUs,

which in turn is a product of the fundamental shift towards more power-

efficient processors.

Second, in Chapter 3 we demonstrated that the hash join is commonly

advantageous over sort-merge join plans, even in the presence of NUMA

effects. In cases where the query response time is comparable, the hash join

query plan frequently consumes less memory because it needs to buffer the

smaller side only, whereas the sort phase of the sort-merge algorithm would

need enough space to buffer both inputs.

Third, in Chapter 4 we showed how to architect a transactional stor-

age engine for memory-resident data. In particular, we designed and im-

plemented two concurrency control schemes that are optimized for main-

memory storage: one is optimistic and relies on read validation, and the

150

other is pessimistic and relies on locking. All concurrency control schemes

achieve a throughput of millions of transactions per second without com-

promising atomicity, isolation or durability.

Future directions

One promising avenue for future work is investigating how other compo-

nents of the data processing stack can take advantage of innovations in the

underlying hardware. This section points to a number of open problems in

this space.

There are many open questions in the area of complex query evaluation

on a memory-resident dataset, especially in query execution, cost modelling

and query optimization. Modern computer systems have much higher band-

width to the last-level cache than to the main memory. This highlights the

need to revisit the role of compression for memory-resident data, and find

suitable algorithms that have latencies that are measured in machine cycles,

and not microseconds, as for disk-based systems. In addition, as the vast

majority of database servers are shared-memory systems, an open question

is whether to represent a tuple by copying the data or referencing a partic-

ular memory location, and how to most efficiently propagate data from one

operator to the next in a complex query pipeline. There is also potential in

exploring how to synergistically execute queries between the main CPU and

a hardware accelerator, such as a programmable vector processor, either on

the same die or in a separate chip. Such a synergy might be desirable for

achieving higher performance, or for guaranteing data confidentiality [6, 7].

There are promising avenues for future research in the transaction pro-

cessing space as well. It remains an open question how to best integrate and

utilize fast non-volatile storage. Today fast storage comes in the form of

flash memory on the motherboard-level interconnect and is block address-

able through the file system stack of the operating system. In the future,

non-volatile memory will likely be directly attached to the memory con-

151

troller and will be byte-addressable by the database management system.

Another interesting topic is how can one leverage hardware transactional

memory to speed up transaction execution [78]. With the fourth generation

of Intel Core CPUs implementing a restricted form of transactional mem-

ory, research in this area can have a big impact on the design of consistent

and highly concurrent data stores [49].

Finally, research in this area presents many collaborative opportunities

with other research fields. Data-intensive applications frequently encounter

bottlenecks both inside the operating system and in the underlying hard-

ware. While some bottlenecks are fundamental in nature, many represent

work that the system undertakes for buggy or legacy applications. While

good design principles mandate the existence of such protective mecha-

nisms, there can be different interfaces for high-performance applications

that choose to opt-out of such behavior. For example, hardware designers

invest significant effort to ensure a consistent and coherent view of the entire

memory, even for large multi-socket NUMA systems. A vertically integrated

system could offer higher performance by requiring the data management

application to designate which memory areas need not be kept coherent,

reducing the cross-NUMA traffic, and to permit weaker memory consis-

tency for this particular application, reducing the memory access latency.

Identifying how to implement, expose and virtualize such features requires

a confluence of database, operating systems and computer architecture re-

search.

153

Bibliography

[1] Divyakant Agrawal, Arthur J. Bernstein, Pankaj Gupta, and Soumitra

Sengupta. Distributed optimistic concurrency control with reduced

rollback. Distributed Computing, 2(1):45–59, 1987.

[2] Divyakant Agrawal and Soumitra Sengupta. Modular synchronization

in multiversion databases: Version control and concurrency control. In

SIGMOD Conference, pages 408–417, 1989.

[3] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Sk-

ounakis. Weaving relations for cache performance. In VLDB, pages

169–180, 2001.

[4] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A.

Wood. DBMSs on a modern processor: Where does time go? In

VLDB, pages 266–277, 1999.

[5] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Mas-

sively parallel sort-merge joins in main memory multi-core database

systems. PVLDB, 5(10):1064–1075, 2012.

[6] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav

Kaushik, Donald Kossmann, Ravishankar Ramamurthy, Prasang

Upadhyaya, and Ramarathnam Venkatesan. Engineering security and

performance with cipherbase. IEEE Data Eng. Bull., 35(4):65–72,

2012.

154

[7] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald

Kossmann, Ravi Ramamurthy, and Ramaratnam Venkatesan. Orthog-

onal Security with Cipherbase. In CIDR, 2013.

[8] Subi Arumugam, Alin Dobra, Christopher M. Jermaine, Niketan

Pansare, and Luis Leopoldo Perez. The DataPath system: a data-

centric analytic processing engine for large data warehouses. In SIG-

MOD, pages 519–530, 2010.

[9] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.

Main-memory hash joins on multi-core CPUs: Tuning to the underly-

ing hardware. In ICDE, 2013.

[10] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick

Ho, Namik Hrle, Stratos Idreos, Min-Soo Kim, Oliver Koeth, Jae-Gil

Lee, Tianchao Tim Li, Guy M. Lohman, Konstantinos Morfonios, René

Müller, Keshava Murthy, Ippokratis Pandis, Lin Qiao, Vijayshankar

Raman, Richard Sidle, Knut Stolze, and Sandor Szabo. Business ana-

lytics in (a) blink. IEEE Data Eng. Bull., 35(1):9–14, 2012.

[11] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and

Michael M. Swift. Efficient virtual memory for big memory servers. In

ISCA, pages 237–248, 2013.

[12] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.

O’Neil, and Patrick E. O’Neil. A critique of ANSI SQL isolation levels.

In SIGMOD Conference, pages 1–10, 1995.

[13] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-

currency Control and Recovery in Database Systems. Addison-Wesley,

1987. ISBN 0-201-10715-5.

[14] Paul M. Bober and Michael J. Carey. Multiversion query locking. In

VLDB, pages 497–510, 1992.

155

[15] Paul M. Bober and Michael J. Carey. On mixing queries and transac-

tions via multiversion locking. In ICDE, pages 535–545, 1992.

[16] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database

architecture optimized for the new bottleneck: Memory access. In

VLDB, pages 54–65, 1999.

[17] Mihaela A. Bornea, Orion Hodson, Sameh Elnikety, and Alan Fekete.

One-copy serializability with snapshot isolation under the hood. In

ICDE, pages 625–636, 2011.

[18] Albert Burger, Vijay Kumar, and Mary Lou Hines. Performance

of multiversion and distributed two-phase locking concurrency con-

trol mechanisms in distributed databases. Information Sciences,

96(1&2):129–152, 1997.

[19] Michael J. Cahill, Uwe Röhm, and Alan David Fekete. Serializable

isolation for snapshot databases. ACM Transactions on Database Sys-

tems, 34(4), 2009.

[20] Michael J. Carey. Multiple versions and the performance of optimistic

concurrency control. Technical report, #517, Computer Sciences De-

partment, University of Wisconsin–Madison, October 1983.

[21] Michael J. Carey and Waleed A. Muhanna. The performance of mul-

tiversion concurrency control algorithms. ACM Transactions on Com-

puter Systems, 4(4):338–378, 1986.

[22] John Cieslewicz, William Mee, and Kenneth A. Ross. Cache-conscious

buffering for database operators with state. In DaMoN, pages 43–51,

2009.

[23] John Cieslewicz and Kenneth A. Ross. Data partitioning on chip mul-

tiprocessors. In DaMoN, pages 25–34, 2008.

156

[24] John Cieslewicz, Kenneth A. Ross, and Ioannis Giannakakis. Parallel

buffers for chip multiprocessors. In DaMoN, 2007.

[25] David J. DeWitt and Jim Gray. Parallel database systems: The future

of database processing or a passing fad? SIGMOD Record, 19(4):104–

112, 1990.

[26] David J. DeWitt and Jim Gray. Parallel database systems: The future

of high performance database systems. Communications of the ACM,

35(6), 1992.

[27] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro,

Michael Stonebraker, and David A. Wood. Implementation techniques

for main memory database systems. In SIGMOD Conference, pages

1–8, 1984.

[28] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider.

Parallel sorting on a shared-nothing architecture using probabilistic

splitting. In PDIS, pages 280–291, 1991.

[29] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and

S. Seshadri. Practical skew handling in parallel joins. In VLDB, pages

27–40, 1992.

[30] Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Com-

pact and concurrent memcache with dumber caching nd smarter hash-

ing. In Proceedings of the 10th USENIX NSDI, Lombard, IL, April

2013.

[31] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd,

Stefan Sigg, and Wolfgang Lehner. SAP HANA database - Data man-

agement for modern business applications. SIGMOD Record, 40(4):45–

51, 2011.

157

[32] Glenn Fowler, Landon Curt Noll, and Phong Vo. FNV hash.

http://www.isthe.com/chongo/tech/comp/fnv/. [Online reference;

accessed June 11, 2013].

[33] Philip Garcia and Henry F. Korth. Database hash-join algorithms on

multithreaded computer architectures. In Conf. Computing Frontiers,

pages 241–252, 2006.

[34] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann.

SharedDB: Killing one thousand queries with one stone. PVLDB,

5(6):526–537, 2012.

[35] Gaston H. Gonnet. Expected length of the longest probe sequence in

hash code searching. J. ACM, 28:289–304, April 1981.

[36] Goetz Graefe. Encapsulation of parallelism in the Volcano query pro-

cessing system. In SIGMOD, pages 102–111, 1990.

[37] Goetz Graefe. Sort-merge-join: An idea whose time Has(h) passed? In

ICDE, pages 406–417, 1994.

[38] Goetz Graefe. Implementing sorting in database systems. ACM Com-

put. Surv., 38(3), 2006.

[39] Jim Gray. A “measure of transaction processing” 20 years later. IEEE

Data Engineering Bulletin, 28(2):3–4, 2005.

[40] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1993. ISBN 1-55860-190-2.

[41] Theo Härder and Erwin Petry. Evaluation of a multiple version cheme

for concurrency control. Information Systems, 12(1):83–98, 1987.

[42] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael

Stonebraker. OLTP through the looking glass, and what we found

there. In SIGMOD, pages 981–992, 2008.

http://www.isthe.com/chongo/tech/comp/fnv/

158

[43] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Aila-

maki. QPipe: A simultaneously pipelined relational query engine. In

SIGMOD, pages 383–394, 2005.

[44] John L. Hennessy and David A. Patterson. Computer Architecture -

A Quantitative Approach, chapter 1, pages 3, 24. Morgan Kaufmann,

5th edition, 2012. ISBN 978-0-12-383872-8.

[45] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Archi-

tectural support for lock-free data structures. In ISCA, pages 289–300,

1993.

[46] IBM DB2 10.1 for Linux, UNIX, and Windows: Troubleshooting and

Tuning Database Performance, chapter 3, page 153. January 2013.

Reference number: SC27-3889-01.

[47] IBM solidDB: In-Memory Database User Guide, March 2013. Refer-

ence number: SC27-3845-04.

[48] “Compare Intel(r) Products” website.

http://ark.intel.com/compare/47922,37149. [Online reference;

accessed June 11, 2013].

[49] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,

volume 1, chapter 14. Reference number: 253665-047US.

[50] Intel and IBM Collaborate to Double In-Memory Database Perfor-

mance. Whitepaper reference number: IMW14204-USEN-00.

[51] Intel Xeon Processor 7500 Series Uncore Programming Guide, March

2010. Reference number: 323535-001.

[52] Ryan Johnson, Ippokratis Pandis, and Anastasia Ailamaki. Improving

OLTP scalability using speculative lock inheritance. PVLDB, 2(1):479–

489, 2009.

http://ark.intel.com/compare/47922,37149

159

[53] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis,

and Anastasia Ailamaki. Aether: A scalable approach to logging.

PVLDB, 3(1):681–692, 2010.

[54] Changkyu Kim, Eric Sedlar, Jatin Chhugani, Tim Kaldewey, An-

thony D. Nguyen, Andrea Di Blas, Victor W. Lee, Nadathur Satish,

and Pradeep Dubey. Sort vs. hash revisited: Fast join implementation

on modern multi-core CPUs. PVLDB, 2(2):1378–1389, 2009.

[55] Vijay Kumar, editor. Performance of Concurrency Control Mecha-

nisms in Centralized Database Systems. Prentice-Hall, 1996. ISBN

0-13-065442-6.

[56] H. T. Kung and John T. Robinson. On optimistic methods for concur-

rency control. ACM Transactions on Database Systems, 6(2):213–226,

1981.

[57] Sanjay Kumar Madria, Mohammed Baseer, Vijay Kumar, and

Sourav S. Bhowmick. A transaction model and multiversion concur-

rency control for mobile database systems. Distributed and Parallel

Databases, 22(2-3):165–196, 2007.

[58] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. What hap-

pens during a join? Dissecting CPU and memory optimization effects.

In VLDB, pages 339–350, 2000.

[59] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing

main-memory join on modern hardware. IEEE Trans. Knowl. Data

Eng., 14(4):709–730, 2002.

[60] John C. McCallum. Memory prices (1957-2013).

http://www.jcmit.com/memoryprice.htm. [Online reference;

accessed June 11, 2013].

http://www.jcmit.com/memoryprice.htm

160

[61] Microsoft SQL Server 2008 R2 Books Online: Iso-

lation Levels in the Database Engine. Available at

http://msdn.microsoft.com/en-us/library/ms189122.aspx

[Online reference; accessed June 11, 2013].

[62] David R. Musser. Introspective sorting and selection algorithms.

Softw., Pract. Exper., 27(8):983–993, 1997.

[63] Thomas Neumann. Efficiently compiling efficient query plans for mod-

ern hardware. PVLDB, 4(9):539–550, 2011.

[64] Extreme Performance Using Oracle TimesTen In-Memory Database,

July 2009. An Oracle technical whitepaper.

[65] Oracle Exalytics In-Memory Machine: A Brief Introduction, October

2011.

[66] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algo-

rithms, 51(2):122–144, 2004.

[67] Christos H. Papadimitriou and Paris C. Kanellakis. On concurrency

control by multiple versions. ACM Transactions on Database Systems,

9(1):89–99, 1984.

[68] Andrew Pavlo, Carlo Curino, and Stanley B. Zdonik. Skew-aware auto-

matic database partitioning in shared-nothing, parallel OLTP systems.

In SIGMOD, pages 61–72, 2012.

[69] Jun Rao and Kenneth A. Ross. Making B+-trees cache conscious in

main memory. In SIGMOD Conference, pages 475–486, 2000.

[70] Kenneth A. Ross. Efficient hash probes on modern processors. In

ICDE, pages 1297–1301, 2007.

http://msdn.microsoft.com/en-us/library/ms189122.aspx

161

[71] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D.

Nguyen, Victor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast

sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort.

In SIGMOD, 2010.

[72] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. Cache con-

scious algorithms for relational query processing. In VLDB, pages

510–521, 1994.

[73] Nir Shavit and Dan Touitou. Software transactional memory. In

PODC, pages 204–213, 1995.

[74] Michael Stonebraker. The case for shared nothing. In HPTS, 1985.

[75] Robert Endre Tarjan. Depth-first search and linear graph algorithms.

SIAM J. Comput., 1(2):146–160, 1972.

[76] Telecommunication Application Transaction Process-

ing (TATP) Benchmark Description. Available at

http://tatpbenchmark.sourceforge.net [Online reference; ac-

cessed June 11, 2013].

[77] Alexander Thomasian. Concurrency control: Methods, performance,

and analysis. ACM Computing Surveys, 30(1):70–119, 1998.

[78] Khai Q. Tran, Spyros Blanas, and Jeffrey F. Naughton. On Hard-

ware Transactional Memory, spinlocks, and database transactions. In

ADMS, 2010.

[79] Gerhard Weikum and Gottfried Vossen. Transactional Information

Systems: Theory, Algorithms, and the Practice of Concurrency Control

and Recovery. Morgan Kaufmann, 2002. ISBN 1-55860-508-8.

[80] Marcin Zukowski and Peter A. Boncz. Vectorwise: Beyond column

stores. IEEE Data Engineering Bulletin, 35(1):21–27, 2012.

http://tatpbenchmark.sourceforge.net

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Opportunities for the next generation of database management systems
	Outline

	Redesigning the hash join algorithm for single-socket, multi-core CPUs
	Introduction
	Related work
	The multi-core landscape
	Different hash join variants
	Experimental evaluation
	Experimenting with a different implementation
	Concluding remarks

	Equi-join algorithms for memory-resident data
	Introduction
	Recent related work
	Join algorithms
	Evaluation methodology
	Experimental results
	Concluding remarks

	Concurrency control for main memory databases
	Introduction
	Related work
	Multi-version storage engine
	Optimistic transactions
	Pessimistic transactions
	Experimental results
	Concluding remarks

	Conclusions and future work
	Bibliography

